Math, asked by pprajha2004, 9 months ago

find the value of a when the distance between the points (3, a) and (4,1) is V10.

Answers

Answered by Anonymous
14

Solution :-

Distance between the points (3, a) and (4, 1) = √10

Using Distance formula

 \tt d =  \sqrt{ (x_2 -  x_1)^{2}  +  (y_2 - y_1)  ^{2}   }

Here,

  • x1 = 3
  • y1 = a
  • x2 = 4
  • y2 = 1

Substituting the values

 \tt  \implies \sqrt{ (4 -  3)^{2}  +  (1 - a)  ^{2}   }  =  \sqrt{10}

 \tt  \implies \sqrt{ 1^{2}  +   {1}^{2} +  {a}^{2} - 2(1)(a)    }  =  \sqrt{10}

[ Because, (a - b)² = a² - 2ab + b² ]

 \tt  \implies \sqrt{ 1  +   1 +  {a}^{2} - 2a   }  =  \sqrt{10}

 \tt  \implies \sqrt{ 2 +  {a}^{2} - 2a   }  =  \sqrt{10}

Squaring on both sides

 \tt  \implies (\sqrt{2 +  {a}^{2} - 2a   }) ^{2}   = ( \sqrt{10} )^{2}

 \tt  \implies 2 +  {a}^{2} - 2a   = 10

 \tt  \implies  {a}^{2} - 2a + 2 - 10   = 0

 \tt  \implies  {a}^{2} - 2a  - 8  = 0

Splitting the middle term

 \tt  \implies  {a}^{2} - 4a + 2a  - 8  = 0

 \tt  \implies  a(a - 4) + 2(a  - 4) = 0

 \tt  \implies  (a + 2)(a - 4)= 0

 \tt  \implies a + 2 = 0 \ \ \ or \ \ \ a - 4= 0

 \tt  \implies a=  - 2 \ \ \ or \ \ \ a = 4

Therefore the value of a is - 2 or 4.

Answered by Anonymous
48

\huge{\boxed{\boxed{\tt{Answer:}}}}

{\boxed{\boxed{\tt{Given\:points\:are:}}}}

➹(3,a) and (4,1)

{\boxed{\boxed{\tt{Find:}}}}

➹Find the value of a when the distance between the points (3, a) and (4,1) is V10.

{\boxed{\boxed{\tt{Using\:distance\:formula:}}}}

{\boxed{\boxed{\tt{ \sqrt{(4 - 3) {}^{2}   \: + \: (1 - a) {}^{2} \: =  \sqrt{10}    } }}}}</p><p>

Squaring on both sides, using the formula:

{\boxed{\boxed{\tt{(4 - 3) {}^{2} \:  +  \: (1 - a) {}^{2}   = 10}}}}

Solving the question, we get:

{\boxed{\boxed{\tt{1 + 1 + a {}^{2} - 2a = 10  }}}}

{\boxed{\boxed{\tt{2 + a {}^{2} - 2a = 10 }}}}

{\boxed{\boxed{\tt{a {}^{2}  - 2a - 8 = 0}}}}

{\boxed{\boxed{\tt{a {}^{2} + 2a - 4a - 8 = 0 }}}}

{\boxed{\boxed{\tt{a(a + 2) - 4(a  + 2 )= 0}}}}

{\boxed{\boxed{\tt{(a - 4)(a + 2) = 0}}}}

Therefore, values of a are -2 and 4.

Similar questions