Math, asked by amanroushan156, 14 hours ago

Find the value of a0,A1 and A2.

Attachments:

Answers

Answered by Tejas10indusharma
0

Answer:

Step-by-step explanation:(1+x)  

2n

=1+  

2n

C  

1

x+  

2n

C  

2

x  

2

+....+  

2n

C  

2n

x  

2n

 

or,

(1+x)  

2n

=a  

0

+a  

1

x+a  

2

x  

2

+...+a  

2n

x  

2n

                                     ...(i)

Similarly,

(1−x)  

2n

=a  

0

−a  

1

x+a  

2

x  

2

+...+a  

2n

x  

2n

                                    ....(ii)

As, a  

0

=a  

2n

,  a  

1

=a  

2n−1

,...and so on. So,  (i) and (ii) can be written as:

(1−x)  

2n

=a  

2n

−a  

2n−1

x+a  

2n−2

x  

2

+...+a  

0

x  

2n

 

(1+x)  

2n

=a  

0

+a  

1

x+a  

2

x  

2

+...+a  

2n

x  

2n

 

So, required answer is coefficient of x  

2n

 in   (1+x)  

2n

.(1−x)  

2n

= coefficient of x  

2n

 in (1−x  

2

)  

2n

 

T  

r+1

=  

2n

C  

r

(−x  

2

)  

r

 

=  

2n

C  

r

(−1)  

r

(x)  

2r

 

So, we need, r=n. Hence, the answer is  (−1)  

n

.a  

n

 

For n−even, the answer is option A, i.e; a  

n

Similar questions