Find the value of a2+ b2+ c2 when a+b+c=√17 and ab + bc+ ca=2
Answers
Answer:
13
Step-by-step explanation:
We do this problem by using the formula:
(a + b + c)² = a² + b² + c² + 2ab + 2bc + 2ca
Given :
a + b + c = √17 --------------> Equation 1 AND
ab + bc + ca = 2 --------------> Equation 2
We put Equation 1 and Equation 2 in that formula, then we get
(a + b + c)² = a² + b² + c² + 2ab + 2bc + 2ca
But before substituting we take 2 common from 2ab + 2bc + 2ca
(a + b + c)² = a² + b² + c² + 2(ab + bc + ca)
Now lets substitute
(√17)² = a² + b² + c² + 2(2)
17 = a² + b² + c² + 4 (Square and square root get cancelled)
17 - 4 = a² + b² + c²
a² + b² + c² = 13
HOPE U UNDERSTOOD
THANK YOU :)