Math, asked by msbolival933, 3 days ago

Find the value of a25 - a15 for the AP: 6, 9, 12, 15, ……​

Answers

Answered by ImperialGladiator
21

Answer:

30

Explanation:

Given A. P. :-

  • 6, 9, 12, 15

Here,

  • first term \rm(a) = 6
  • common difference \rm(d) = 3.

We know that,

nth term of an A.P. is given by,

 \implies\rm a_n = a + (n - 1)d

So 15th term of the AP is:-

 \implies\rm a_{15} = 6 + (15 - 1)3

 \implies\rm a_{15} = 6 + (14)3

 \implies\rm a_{15} = 6 + 42

 \implies\rm a_{15} = 48

And also, 25th term of the AP:-

 \implies\rm a_{25} = 6 + (25 - 1)3

 \implies\rm a_{25} = 6 + (24)3

 \implies\rm a_{25} = 6 + 72

 \implies\rm a_{25} = 78

\rm\therefore \: a_{25} - a_{15} = 78 - 48 \\ \rm \implies a_{25} - a_{15} =\bf 30

Required answer: 30

__________________________

Answered by kvalli8519
7

Given,

AP is 6,9,12,15, ....

 \rm find \:  :  \: value \:  \: of \:  \:  \: a_{25} \:  - a_{15}

SOLUTION :-

from the given AP, we observe that

First term (a) = 6

Common difference (d) = 9 - 6 = 3

then, as we know that

nth term of an AP is given by

 \ast \:  \:  \underline{ \boxed{ \color{gold}  \bf a_n = a + (n - 1)d}}

then,

\tt⇢ \: \:a_ {25} = a + 24d

\tt⇢ \: \:6 + 24 \times 3

\tt⇢ \: \:6 + 72

\tt⇢ \: \:a_ {25} = 78

and,

\tt⇢ \: \:a_ {15} = a + 14d

\tt⇢ \: \:6 + 14 \times 3

\tt⇢ \: \:a_ {15} = 48

then, on substituting the values

\tt⇢ \:  \: a_ {25} - a_ {15}

\tt⇢ \: \:78 - 48

\tt⇢ \: \:30

FINAL ANSWER :-

 \rm \therefore the \:  \: value \:  \: of \:  \:  \boxed{  \color{lime}\bf a_ {25}  - a_ {15} = 30}

Similar questions