find the value of a3+27b3 if a-2b=(-6) and ab=(-10)
Answers
Answered by
0
Answer:
Concept:
a³-b³=(a-b) (a²+b²+ab)
(a-b)²= a²+b²-2ab
Find:
We find the value of a³-27b³
Given:
We given a−3b=−6, ab =-10
Step-by-step explanation:
a−3b=−6
Squaring both sides,
(a−3b)² =−6²
a²+9b²−2(a)(3b)=36
a²+9b²−6(ab)=36
a²+9b²−6(−10)=36
a²+9b²=36−60
a²+9b²=−24
Now,
a³−(3b)³=(a−3b)[(a)²+(3b)²+(a)(3b)]
a³−27b³=−6(−24+3(−10))
=−6(−24−30)
=-6(-54)
=-324
Hence the value of a³-27b³ is -324
Similar questions