Find the value of a3+8b3 if a+2b=10 and ab=15
Answers
a + 2b = 10
ab = 15
______________[GIVEN]
a + 2b = 10
• Take cube on both sides
=> (a + 2b)³ = (10)³
=> (a)³ + 3(a)(2b) [(a + 2b)] + (2b)³ = 1000
=> a³ + 8b³ + 6ab (a + 2b) = 1000
=> a³ + 8b³ + 6(15) (10) = 1000
=> a³ + 8b³ + 900 = 1000
=> a³ + 8b³ = 1000 - 900
=> a³ + 8b³ = 100
____________________________
» Using Identity :
(a + b)³ = a³ + 3ab (a + b) + b³
OR
(a + b)³ = a³ + 3a²b + 3ab² + b³
_____________________________
a³ + 8b³ = 100
________________[ANSWER]
Answer:
100
Step- by-step explanation:
Given a +2b = 10 and ab = 15
Consider, a3 + 8b3 = a3 + (2b)3
= (a + 2b)3 − 3 × a × 2b(a + 2b) [Since, a3 + b3 = (a + b)− 3ab(a + b)]
= (a + 2b)3 − 6ab(a + 2b)
= (10)3 − 6 × 15 × 10
= 1000 − 900 = 100