Math, asked by mogilisaiaravind, 4 months ago

find the value of a³-b³/a-b​

Answers

Answered by kavithabh7
1

Answer:

a³-b³/a-b =(a-b)( a²-b²)/ (a-b)

=(a²-b²) by algebraic identities

=(a+b) (a-b)

Answered by BrainlyProgrammer
7

Solution:-

This is a very easy Question....it can be solved using Algebric identities

We know,

  • (a-b)³=a³-b³-3ab(a-b)

=>(a-b)³+3ab(a-b)=a³-b³

To find:-

 \frac{a {}^{3}  - b {}^{3} }{a - b} \:  \:  \:   = \frac{(a-b)³+3ab(a-b)}{a - b}

Taking (a-b) as common....

 = \frac{(a-b)((a - b)^{2} +3ab)}{a - b}  \\

(a-b) and (a-b) gets cancelled.....

 = {(a - b)}^{2}  + 3ab \\  =  {a}^{2}  +  {b}^{2}  - 2ab + 3ab \\  =  {a}^{2}  + b {}^{2}  + ab

Correct Answer:-

  • a²+b²+ab

___________________________

\boxed{\begin{minipage}{7 cm}\boxed{\bigstar\:\:\textbf{\textsf{Algebric\:Identity}}\:\bigstar}\\\\1)\bf\:(A+B)^{2} = A^{2} + 2AB + B^{2}\\\\2)\sf\: (A-B)^{2} = A^{2} - 2AB + B^{2}\\\\3)\bf\: A^{2} - B^{2} = (A+B)(A-B)\\\\4)\sf\: (A+B)^{2} = (A-B)^{2} + 4AB\\\\5)\bf\: (A-B)^{2} = (A+B)^{2} - 4AB\\\\6)\sf\: (A+B)^{3} = A^{3} + 3AB(A+B) + B^{3}\\\\7)\bf\:(A-B)^{3} = A^{3} - 3AB(A-B) + B^{3}\\\\8)\sf\: A^{3} + B^{3} = (A+B)(A^{2} - AB + B^{2})\\\\\end{minipage}}

Please see this answer from brainly.in website

Similar questions