find the value of a3-b3 for a =3 and b=-2
Answers
Answer:
Given :-
- Equation - a³ - b³
- a = 3
- b = ( - 2)
Have to Find :
- The value of a³ - b³
Solution :
We are going to use algebraic identity in order to get the value of the expression
Identity Used :
- a³ - b³ → (a – b) (a² + b² + ab)
Now, we know a → 3 and b → (-2)
Substituting the values in it, we get
→ a³ - b³ = [ 3 - ( -2) ] [ (3)² + (-2)² + 3 × (-2) ]
→ a³ - b³ = 5 [ 9 + 4 - 6 ]
→ a³ - b³ = 5 [ 13 - 6 ]
→ a³ - b³ = 5 × 7
→ a³ - b³ = 35
.
Hence, the value of a³ - b³ is 35 .
_____________________________
Important Algebraic identities are:-
★ (a + b)² = a² + 2 ab + b²
★(a - b)² = (a + b)² - 4 ab
★ a² - b² = (a + b) (a - b)
★ (x + a) (x + b) =x² + (a + b) x + ab
★ (a + b)² = (a - b)² + 4 ab
★ (a - b)² = a² - 2 ab + b²
★ (a - b)³= a³- 3a²b + 3ab² - b³
★ (a - b)³ = a³- b³-3ab (a-b)
★ a³+ b³ = (a + b) (a²-ab + b²)
★ a³- b³= (a - b)(a²+ ab + b²)
★ a³- b³= (a - b)³ + 3ab(a-b)
★ (a + b + c)²= a²+ b²+ c² + 2ab + 2bc + 2ca
★ (a + b - c)² = a²+ b²+ c² + 2ab - 2bc -2ca
★ (a - b + c)²= a² + b²+c²-2ab -2bc +2ca
★ (a - b - c)²= a²+b²+c²-2ab +2bc -2ca
★a² + b² = (a - b)² + 2ab
★ (a + b + c)³ = a³ + b³ + c³ + 3a²b + 3a²c + 3ab²+3b²c + 3ac² + 3bc² + 6abc
★ (a - b - c)³ = a³ - b³ - c³ - 3a²b - 3a²c + 3ab² + 3b²c + 3ac² - 3bc² + 6abc