Math, asked by Imrankhan837, 7 months ago

Find the value of a4 for the recurrence relation an=2an-1+3, with a0=6. 65 141 221 320

Answers

Answered by pulakmath007
7

\displaystyle\huge\red{\underline{\underline{Solution}}}

GIVEN

A recurrence relation is given by

 \sf{a_n = 2 a_{n-1} + 3 \:  \:  \:   \:  \:  \:  \: with \:  \:  \:  a_0 = 6}

TO CHOOSE THE CORRECT OPTION

 \sf{a_4 = }

  • 65

  • 141

  • 221

  • 320

CALCULATION

Here the recurrence relation is given by

 \sf{a_n = 2 a_{n-1} + 3 \:  \:  \:   \:  \:  \:  \: with \:  \:  \:  a_0 = 6}

So

 \sf{a_0 = 6}

 \sf{a_1 = 2 a_{0} + 3 \: = (2 \times 6) + 3 = 15  }

 \sf{a_2 = 2 a_{1} + 3 \: = (2 \times 15) + 3 = 33  }

 \sf{a_3 = 2 a_{2} + 3 \: = (2 \times 33) + 3 = 69  }

 \sf{a_4 = 2 a_{3} + 3 \: = (2 \times 69) + 3 = 141  }

RESULT

 \boxed{  \sf{\:  \:  \: Hence  \: \:  \:  \:  a_4 = 141 \: \:  \:  }}

━━━━━━━━━━━━━━━━

LEARN MORE FROM BRAINLY

Solve the recurrence relation

s(k)-10s(k-1)+9s(k-2)=0 with s(0)=3,s(1)=11

https://brainly.in/question/23772288

Answered by ayush581850
0

Answer:

141

Step-by-step explanation:

a

n

=2a

n−1

+3witha

0

=6

So

\sf{a_0 = 6}a

0

=6

\sf{a_1 = 2 a_{0} + 3 \: = (2 \times 6) + 3 = 15 }a

1

=2a

0

+3=(2×6)+3=15

\sf{a_2 = 2 a_{1} + 3 \: = (2 \times 15) + 3 = 33 }a

2

=2a

1

+3=(2×15)+3=33

\sf{a_3 = 2 a_{2} + 3 \: = (2 \times 33) + 3 = 69 }a

3

=2a

2

+3=(2×33)+3=69

\sf{a_4 = 2 a_{3} + 3 \: = (2 \times 69) + 3 = 141 }a

4

=2a

3

+3=(2×69)+3=141

Similar questions