Math, asked by aarush1360, 1 year ago

find the value of AB + BC + CA if a + b + c = 15 and a^2 + b^2+c^2=77​

Answers

Answered by chhavi89
11

a+b+c=15

On squaring both sides

( {a + b  + c)}^{2}  = ( {15)}^{2}  \\  {a }^{2}  +  {b}^{2}  +  {c}^{2}  + 2ab + 2bc + 2ca = 225 \\

It is given that

a^2+b^2+c^2=77

Putting this in the above equation

77 + 2ab + 2bc + 2ca = 225 \\ 2(ab + bc + ca) = 225 - 77 \\ ab + bc + ca =  \frac{148}{2}  \\ ab + bc + ca = 74

Answered by kts182007
1

Answer:

74

Step-by-step explanation:

Given:

a + b + c = 15

a² + b² + c² = 77

To find:

ab + bc + ca

Solution:

We know,

(a + b + c)² = a² + b² + c² + 2ab + 2bc + 2ca  - - (i)

By taking 2 common the Identity can be rewritten as:

(a + b + c)² = a² + b² + c² + 2(ab + bc + ca) - - (ii)

--------------------------------------

Plugging the values we know in (ii), we have:

(15)² = 77 + 2(ab + bc + ca)

225 = 77 + 2 (ab + bc + ca)

225 - 77 = 2 (ab + bc + ca)

148 = 2 (ab + bc + ca)

74 = (ab + bc + ca)

Similar questions