Math, asked by KrishankJaiswal, 7 months ago

find the value of ab + bc + ca if , a + b + c = 15 and
 {a}^{2}  + {b}^{2}   +  {c}^{2}   is  = 77
Please Please Please Please Please Please Please Please Please Please Please Please Please Please Please Please Please Please Please Please Don't Spam A Very Humble Request

Answers

Answered by Anonymous
19

\bf{\underline{\underline{\blue{Question:-}}}}

  • find the value of ab + bc + ca if , a + b + c = 15 and a² + b² + c² = 77

\bf{\underline{\underline{\blue{Find:-}}}}

  • value of ab + bc + ca = ?

\bf{\underline{\underline{\blue{Given:-}}}}

  • a + b + c = 15
  • a² + b² + c² = 77

\bf{\underline{\underline{\blue{Formula\: used:-}}}}

\rm{\boxed{\blue{(a+b+c)^2=a^2+b^2+c^2+2(ab+bc+ca)}}}

\bf{\underline{\underline{\blue{Calculation:-}}}}

\sf → (a+b+c)^2=a^2+b^2+c^2+2(ab+bc+ca)

\sf → (15)^2=77+2(ab+bc+ca)

\sf → 225=77+2(ab+bc+ca)

\sf → 225-77=2(ab+bc+ca)

\sf → 148=2(ab+bc+ca)

\sf → ab+bc+ca=\dfrac{\cancel{148}}{\cancel{2}}

\sf → ab+bc+ca=74

\bf{\underline{\underline{\blue{Hence:-}}}}

  • value of ab + bc + ca = 74
Answered by amankumaraman11
2

Given,

 \green{ \boxed{ \rm{}a + b + c \gray =  \purple{15}}}

 \green{ \boxed{ \rm{a}^{2} + {b}^{2} + {c}^{2}   \gray=  \purple{77}}}

 \bull \:  \:  \text{To \: find}  \bf \: :  \:  \:  \orange{ab + bc + ca}

Here,

 \tt{}a + b + c \gray =  15 \\  \small\boxed{ \rm{squaring \:  \: both \:  \: sides}}  \\  \to \tt{ {(a + b + c)}^{2} } =  {(15)}^{2}  \\  \small\to  \tt{ {a}^{2} +  {b}^{2}  +  {c}^{2}  + 2(ab + bc + ca) }= 225 \\   \small\boxed{ \rm{putting \:  \: the \:  \: known \:  \: value}}  \\ \to \tt{77 + 2(ab + bc + ca)} = 225 \\  \small\boxed{ \rm{transposing \:  \: 77 \:  \: to \:  \: RHS}}   \\ \ \to \tt2(ab + bc + ca) = 225 - 77 \\  \to \tt2(ab + bc + ca)  = 148 \\ \small\boxed{ \rm{dividing \:  \: both \:  \: sides \:  \: by \:  \: 2 }} \\   \to \tt\frac{ \cancel2(ab + bc + ca)}{ \cancel2}  =  \frac{148}{2}  \\   \\  \to \tt{ab + bc + ca} = \red{ 74}

Thus,

  • ab + bc + ca = 74
Similar questions