Math, asked by sarikilavanya6, 1 month ago

find the value of above question.​

Attachments:

Answers

Answered by itzsecretagent
7

According to question,

 \sf \:  \sqrt{2 \sqrt{2+2cos4θ}}  = 2cosθ

  • squaring on both sides,

 \sf \implies \: 2 +  \sqrt{2+2cos4θ}  = 4 {cos}^{2}θ

 \sf \implies \:  \sqrt{2+2cos4θ}  = 4 {cos}^{2}θ - 2

 \sf \implies \:  \sqrt{2+2cos4θ}  = 2(2 {cos}^{2}θ - 1)

 \sf \implies \:  \sqrt{2+2cos4θ}  = 2(cos2θ)

Again squaring,

 \sf \implies \: 2 + 2cos4θ = 4( {cos}^{2} 2θ)

 \sf \implies \: 2cos4θ = 4( {cos}^{2}θ ) - 2

 \sf \implies \: 2cos4θ = 2(cos4θ)

 \therefore \sf LHS=RHS

 \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: Hence  \: proved

Hope it helps

\rule{300px}{.6ex}

Similar questions