Math, asked by NewBornTigerYT, 10 months ago

Find the value of above variables, m and n
with explanation. ​

Attachments:

Answers

Answered by AdorableMe
15

\rule{300}{3}

GIVEN :-

\textsf{A bag contains 'm' white balls.}

\textsf{It contains 21 red balls.}

\textsf{It also contains 'n' blue balls.}

\longrightarrow\textsf{ A ball is drawn at random from the bag.}

\bigstar\ \textsf{Probability of getting a blue ball is }\displaystyle{\sf{\frac{1}{4}. }}

\bigstar\ \textsf{Probability of getting a blue ball is }\displaystyle{\sf{\frac{7}{20}. }}

TO FIND :-

\textsf{The value of 'm' and 'n'.}

SOLUTION :-

\textsf{Total number of balls = 21 +m+n}

\displaystyle{\sf{Probability\ of\ getting\ a\ red\ ball=\frac{Number\ of\ red\ balls}{Total\ number\ of\ blue\ balls} }}

\displaystyle{\sf{\implies \frac{7}{20}=\frac{21}{21+m+n}  }}\\\\\\\displaystyle{\sf{\implies \frac{1}{20}=\frac{3}{21+m+n}  }}\\\\\\\displaystyle{\sf{\implies 21+m+n=60}}\\\\\displaystyle{\sf{\implies m+n=39}}\\\\\displaystyle{\sf{\implies m=39-n}}\:\:\:\:\:\:\:\: \cdots(i)\\

\\\\\displaystyle{\sf{Probability\ of\ getting\ a\ blue\ ball=\frac{Number\ of\ blue\ balls}{Total\ number\ of\ blue\ balls} }}\\\\\displaystyle{\implies \sf{\frac{1}{4}=\frac{n}{21+m+n}  }}\\\\\displaystyle{\sf{\implies 21+m+n=4n}}\\\\\displaystyle{\sf{\implies 21+m-3n=0}}\\\\\displaystyle{\sf{\implies m=3n-21}}\\\\\displaystyle{\sf{\implies 39-n=3n-21}}\:\:\:\:\:\:\:\: \cdots\sf{[from\ (i)]}\\\\\displaystyle{\sf{\implies 60=4n}}\\\\\underline{\boxed{\displaystyle{\sf{\implies n=15}}}}

\sf{Now,\ from\ (i),\ m=39-n.}\\\\\textsf{Putting the value of n = 4 in (i) :}\\\\\displaystyle{\sf{m=39-4}}\\\\\underline{\boxed{\displaystyle{\sf{\implies m=35 }}}}

\rule{300}{3}

Answered by mohan3009
6

Answer:

above answer is correct mark it as brainliest one.

Similar questions