Math, asked by Thuninajji, 1 month ago

Find the value of alpha^2 + beta^2/alpha^-2 + beta^-2​

Attachments:

Answers

Answered by mahendra15aug
1

Answer:

HOW TO SOLVE?

a {x}^{2}  + bx + c = 0 \\  { \alpha }^{ - 2} +  { \beta }^{ - 2}   =  \frac{1}{ { \alpha }^{2} }   +  \frac{1}{ { \beta }^{2} }  \\   { \alpha }^{ - 2}  +  { \beta }^{ - 2} =  \frac{ { \alpha }^{2} +  { \beta }^{2}  }{( { \alpha  \beta) }^{2} }  \\ to \: find \: value \: of \:  =  \frac{ { \alpha }^{2} +  { \beta }^{2}  }{ \alpha  {}^{ - 2} +  { \beta }^{ - 2}  }  \\ pu t \: value \: of \:  { \alpha }^{ - 2}  +  { \beta }^{ - 2} \\  \frac{ \frac{ { \alpha }^{2} +  { \beta }^{2}  }{ { \alpha }^{2}  +  { \beta }^{2} } }{( \alpha  \beta ) {}^{2} }   = \frac{ \frac{1}{1} }{( { \alpha  \beta )}^{2} }  \\  = ( { \alpha  \beta )}^{2}  \\ put \: value \: of \:  \alpha  \beta  =  \frac{c}{a}  \\(  { \frac{c}{ {a}^{} } })^{2}  =  \frac{ {c}^{2} }{ {a}^{2} }

It was a tricky question,

HAVE A NICE DAY!!!

HOPE IT HELPS YOU!!!

Answered by AbhinavRocks10
5

\Large{\underline{\underline{\mathfrak{\bf{Question}}}}}

If (α + β)=24,( α - β) = 8 find a polynomial whose zeroes are i) α ² + β² and α² - β²

\Large{\underline{\underline{\mathfrak{\bf{Solution}}}}}

\Large{\underline{\mathfrak{\bf{\pink{Given}}}}}

(α + β)=24,...(1)

( α - β) = 8 ...(2)

\Large{\underline{\mathfrak{\bf{\pink{Find}}}}}

A polynomial whose zeroes are (α ² + β²) and ( α² - β²)

\Large{\underline{\underline{\mathfrak{\bf{Explanation}}}}}

Addition of equ(1) and equ(2)

➥ 2α = 32

➥ α = 32/2

➥ α = 16

Again, Keep value of " α " in equ(1)

➥ 16 + β = 24

➥ β = 24 - 16

➥ β = 8

Thus:-

  1. Value of α = 16
  2. Value of β = 8

Now,

(α ² + β²)

( keep value of α and β

➥ (16)²+(8)²

➥ 256+64

➥ 320

And,

( α² - β²)

( keep value of α and β )

➥ (16)²-(8)²

➥ 256 - 64

➥ 192

Now,

➩ Sum Of Zeroes = (α ² + β²)+( α² - β²)

➩ Sum Of Zeroes = (320)+(192)

➩ Sum Of Zeroes = 512

And,

  • ➩ Product Of Zeroes = (α ² + β²)×( α² - β²)

  • ➩ Product Of Zeroes = (320)×(192)

  • ➩ Product Of Zeroes = 61,440

  • Formula Quadratic Equation

[ x² -x(Sum of Zeroes)+(Product of zeroes ) = 0 ]

( Keep all values )

➩ [ x² - (512)x + (61,440) ] = 0

  • This is required equation
Similar questions