Math, asked by mhisham292005, 9 months ago

Find the value of alpha and beta for which the following pair of linear equations has

infinite number of solutions:

2x + 3y = 7;

αx + (α + β)y = 28​

Answers

Answered by agrtraders1956
2

Answer:

 \alpha  = 4 \\  \beta  = 2

Step-by-step explanation:

 \:  \:  \:  \: 2x + 3y = 7 \\  \:  \:  \alpha \: x  + ( \alpha  +  \beta )y = 28 \\  \div 4 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \frac{ \alpha x + ( \alpha  +  \beta )y}{4} = 7 \\  \frac{ \alpha x + ( \alpha  +  \beta )y}{4} = 2x + 3y \\  \alpha x + ( \alpha  +  \beta )y = 4x + 6y

On comparing with

 \alpha  = 4 \\  \alpha  +  \beta  = 6 \\ now \:  \:  \:  \:  \:  \:  \:  \:  \:  \\ 4 +  \beta  = 6 \\  \beta  = 2 \\ result. \\  \alpha  = 4 \\  \beta  = 2

Similar questions