Math, asked by reo3, 1 year ago

find the value of alpha and beta from poly nomial ax²+bx+c then find alpha ²+beta²

Answers

Answered by skh2
1
The polynomial is
P(x) = ax²+bx+c

Alpha and beta are the zeroes of the polynomial.
For quadratic polynomials the relation between the zeroes and the coefficients is
 \alpha  \beta  =  \frac{c}{a}  \\  \alpha +   \beta  =  \frac{ - b}{a}
We need to find value of alpha²+beta²

 {( \alpha  +  \beta )}^{2}  =  { \alpha }^{2}  +  { \beta }^{2}  + 2 \alpha  \beta  \\  { \alpha }^{2}  +  { \beta }^{2}  =  {( \alpha +   \beta) }^{2}  - 2 \alpha  \beta  \\  \\ putting \: the \: values \\  { \alpha }^{2}  +  { \beta }^{2}  =  {( \frac{ - b}{a}) }^{2}  -  \frac{2c}{a}  =  \frac{ {b}^{2} }{ {a}^{2} }  -  \frac{2c}{a}  \\  =  \frac{ {b}^{2}  - 2ac}{ {a}^{2} }
Hope this will be helping you....

Similar questions