Math, asked by mohamedshad2004, 11 months ago

Find the value of Alpha-beta the whole square

Attachments:

Answers

Answered by ariyaurujmd40
1

Answer:

The formula for \bold{(\alpha-\beta)^{2}=\alpha^{2}+\beta^{2}-2 \times \alpha \times \beta}(α−β)

2

2

2

−2×α×β

To find:

The formula for (\alpha-\beta)^{2}(α−β)

2

Solution:

We know that according to algebraic expression,(a+b)^{2}=a^{2}+b^{2}+2 \times a \times b \rightarrow(2)(a+b)

2

=a

2

+b

2

+2×a×b→(2)

Similarly,(a-b)^{2}=a^{2}+b^{2}-2 \times a \times b \rightarrow(2)(a−b)

2

=a

2

+b

2

−2×a×b→(2)

Here a=\alpha, b=\betaa=α,b=β

substitute the values for a and b in the above equation (2) ,

Hence,(\alpha-\beta)^{2}=\alpha^{2}+\beta^{2}-2 \times \alpha \times \beta \rightarrow(3)(α−β)

2

2

2

−2×α×β→(3)

The above equation represents the formula for subtracting any two terms when they are squared,

Therefore, the value of (\alpha-\beta)^{2}=\alpha^{2}+\beta^{2}-2 \times \alpha \times \beta(α−β)

2

2

2

−2×α×β

Similar questions