Find the value of Alpha-beta the whole square
Answers
Answer:
The formula for \bold{(\alpha-\beta)^{2}=\alpha^{2}+\beta^{2}-2 \times \alpha \times \beta}(α−β)
2
=α
2
+β
2
−2×α×β
To find:
The formula for (\alpha-\beta)^{2}(α−β)
2
Solution:
We know that according to algebraic expression,(a+b)^{2}=a^{2}+b^{2}+2 \times a \times b \rightarrow(2)(a+b)
2
=a
2
+b
2
+2×a×b→(2)
Similarly,(a-b)^{2}=a^{2}+b^{2}-2 \times a \times b \rightarrow(2)(a−b)
2
=a
2
+b
2
−2×a×b→(2)
Here a=\alpha, b=\betaa=α,b=β
substitute the values for a and b in the above equation (2) ,
Hence,(\alpha-\beta)^{2}=\alpha^{2}+\beta^{2}-2 \times \alpha \times \beta \rightarrow(3)(α−β)
2
=α
2
+β
2
−2×α×β→(3)
The above equation represents the formula for subtracting any two terms when they are squared,
Therefore, the value of (\alpha-\beta)^{2}=\alpha^{2}+\beta^{2}-2 \times \alpha \times \beta(α−β)
2
=α
2
+β
2
−2×α×β