Find the value of Alpha so that the following linear equation have no solution. (3 alpha +1)x+3y-2=0 and alpha +1 X +Alpha - 2y-5
Answers
Answered by
19
Answer:
The given system of linear equation is:
1. (3 A +1)x +3 y -2=0
2. (A+1)x+A-2 y-5=0
(A+1)x-2 y+A-5=0, Here A= alpha
The two system of linear equation
1. a x + b y=c
2. p x + q y =r
have no solution,
or
4≠3 A -15
3A≠4+15
3A≠19
Answered by
0
a=qb=rc
\begin{gathered}\frac{(3 A+1)}{A+1}=\frac{3}{-2}=\frac{-2}{A-5}\\\\ -6A-2=3A+3 \\\\ 9A=-5\\\\A=\frac{-5}{9}\end{gathered}A+1(3A+1)=−23=A−5−2−6A−2=3A+39A=−5A=9−5
or
4≠3 A -15
3A≠4+15
3A≠19
A\neq\frac{19}{3}A=319
A=\frac{-5}{9}A=9−5
Similar questions