Math, asked by mohammedsaeednassar, 1 year ago

find the value of and b if
\frac{\sqrt{3}-1 }{\sqrt{3}+1 } =a+b\sqrt{3}

Answers

Answered by Tomboyish44
8

First, we rationalise the denominator.

\mathsf{\frac{\sqrt{3} \ - \ 1}{\sqrt{3} \ + \ 1}} = \mathsf{a + b\sqrt{3}}

\mathsf{\frac{\sqrt{3} \ - \ 1}{\sqrt{3} \ + \ 1}} \mathsf{\times}  \mathsf{\frac{\sqrt{3} \ - \ 1}{\sqrt{3} \ - \ 1}} = \mathsf{a + b\sqrt{3}}

\mathsf{\frac{(\sqrt{3} \ - \ 1 )^{2}}{\sqrt{3}^{2} - 1^{2}}} = \mathsf{a + b\sqrt{3}}

\mathsf{\frac{(\sqrt{3})^{2} \ - \ 2(\sqrt{3})(1) \ + \ 1^{2}}{\sqrt{3}^{2} \ - \ 1^{2}}} = \mathsf{a + b\sqrt{3}}

\mathsf{\frac{3 \ - \ 2\sqrt{3} \ + \ 1 }{2}} = \mathsf{a + b\sqrt{3}}

\sf{\frac{4 \ - 2\sqrt{3}}{2}} = \mathsf{a + b\sqrt{3}}

\sf{\frac{4}{2}} + \sf{\frac{-2\sqrt{3}}{2}}

\mathsf{On \ Cancelling \ we \ get,}

\sf{2 \ + \ -1\sqrt{3}}

\sf{Hence,}

\sf{a = 2}

\sf{a = -1}

Similar questions