Math, asked by Anonymous, 3 months ago

Find the Value of α and b if :
 \frac{7 + 3 \sqrt{5} }{2 +  \sqrt{5} }  -  \frac{7 - 3 \sqrt{5} }{2 -  \sqrt{5} }  = a + b \sqrt{5}  \\

Answers

Answered by kumari17shiromani
12

Given,

 \frac{7 + 3 \sqrt{5} }{2 +  \sqrt{5} }  - \frac{7 - 3 \sqrt{5} }{ 2-  \sqrt{5} }  = a + b \sqrt{5}  \\

To Find,

  • The value of α and b

Solution,

::\implies \frac{7 + 3 \sqrt{5} }{2 + \sqrt{5} } - \frac{7 - 3 \sqrt{5} }{2 - \sqrt{5} } = a + b \sqrt{5} \\  \\  ::\implies \frac{7 + 3 \sqrt{5} }{2 + \sqrt{5} } \times  \frac{2 -  \sqrt{5} }{2 - \sqrt{5}  }  - \frac{7 - 3 \sqrt{5} }{2 - \sqrt{5} } \times   \frac{2 +  \sqrt{5} }{2 +  \sqrt{5} } = a + b \sqrt{5} \\  \\::\implies   \frac{(7 + 3  \sqrt{5} )(2 -  \sqrt{5}) }{ {(2)}^{2}  -  {( \sqrt{5} )}^{2} } - \frac{(7 - 3  \sqrt{5} )(2 +  \sqrt{5}) }{ {(2)}^{2}  -  {( \sqrt{5} )}^{2} } = a + b \sqrt{5} \\  \\::\implies   \frac{7(2 -  \sqrt{5}) + 3 \sqrt{5}(2 -  \sqrt{5}) }{ 4 - 5}  -  \frac{7(2  +   \sqrt{5})  -  3 \sqrt{5}(2  +   \sqrt{5}) }{ 4 - 5} = a + b \sqrt{5}  \\  \\ ::\implies  \frac{14 - 7 \sqrt{5} + 6 \sqrt{5} -  15 }{ - 1}  -  \frac{14 + 7 \sqrt{5}   - 6 \sqrt{5} - 15}{4 - 5}  = a + b \sqrt{5}  \\  \\ ::\implies   \frac{ - 1 -  \sqrt{5} }{ - 1}  -  \frac{ - 1 +  \sqrt{5} }{ - 1}  = a + b \sqrt{5}  \\  \\::\implies    \frac{- 1 \times (1 +  \sqrt{5} )}{ - 1}  -  (- 1( - 1 +  \sqrt{5} )  = a + b \sqrt{5}  \\  \\ ::\implies 1 +  \sqrt{5}  - 1 +  \sqrt{5}  = a + b \sqrt{5}  \\  \\ ::\implies 0 + 2 \sqrt{5}  = a + b \sqrt{5}

Required Answer,

  • α = 0
  • b = 2
Answered by MrsGoodGirl
12

 \huge  \bf \color{blue}Given

\begin{gathered} \frac{7 + 3 \sqrt{5} }{2 + \sqrt{5} } - \frac{7 - 3 \sqrt{5} }{ 2- \sqrt{5} } = a + b \sqrt{5} \\ \\ \end{gathered}  \\ </p><p>

 \huge  \bf \color{green}{To \:  \:  Find}

The value of α and b

 \huge  \bf \color{red}{Solution}

\begin{gathered}::\implies \frac{7 + 3 \sqrt{5} }{2 + \sqrt{5} } - \frac{7 - 3 \sqrt{5} }{2 - \sqrt{5} } = a + b \sqrt{5} \\ \\ ::\implies \frac{7 + 3 \sqrt{5} }{2 + \sqrt{5} } \times \frac{2 - \sqrt{5} }{2 - \sqrt{5} } - \frac{7 - 3 \sqrt{5} }{2 - \sqrt{5} } \times \frac{2 + \sqrt{5} }{2 + \sqrt{5} } = a + b \sqrt{5} \\ \\::\implies \frac{(7 + 3 \sqrt{5} )(2 - \sqrt{5}) }{ {(2)}^{2} - {( \sqrt{5} )}^{2} } - \frac{(7 - 3 \sqrt{5} )(2 + \sqrt{5}) }{ {(2)}^{2} - {( \sqrt{5} )}^{2} } = a + b \sqrt{5} \\ \\::\implies \frac{7(2 - \sqrt{5}) + 3 \sqrt{5}(2 - \sqrt{5}) }{ 4 - 5} - \frac{7(2 + \sqrt{5}) - 3 \sqrt{5}(2 + \sqrt{5}) }{ 4 - 5} = a + b \sqrt{5} \\ \\ ::\implies \frac{14 - 7 \sqrt{5} + 6 \sqrt{5} - 15 }{ - 1} - \frac{14 + 7 \sqrt{5} - 6 \sqrt{5} - 15}{4 - 5} = a + b \sqrt{5} \\ \\ ::\implies \frac{ - 1 - \sqrt{5} }{ - 1} - \frac{ - 1 + \sqrt{5} }{ - 1} = a + b \sqrt{5} \\ \\::\implies \frac{- 1 \times (1 + \sqrt{5} )}{ - 1} - (- 1( - 1 + \sqrt{5} ) = a + b \sqrt{5} \\ \\ ::\implies 1 + \sqrt{5} - 1 + \sqrt{5} = a + b \sqrt{5} \\ \\ ::\implies 0 + 2 \sqrt{5} = a + b \sqrt{5} \end{gathered}

 \huge  \bf \color{purple}{Required \:  \:  Answer,}

α = 0

α = 0b = 2

 \huge  \bf \color{orange}{hope  \: it's  \: helpful \:  to  \: you} \\  \\  \color {pink}@TheGoodGirl

Similar questions