Math, asked by cutipie35, 11 months ago

find the value of and it is from lesson - complex number of 11th standard.
answer it guys ​

Attachments:

Answers

Answered by Anonymous
11

Answer with Explanation :

First, find the values of \sf i^6,i^7,i^{11}

\sf (i)^6=(i^2)^3=((\sqrt{-1})^2)^3=(-1)^3=-1

\sf (i)^7=(i)^6(i)=(-1)(i)=-i

\sf (i)^{11}=(i)^{10}(i)=(i^2)^5(i)

=\sf ((\sqrt{-1})^2)^5(i)=(-1)^5(i)=-i

Therefore

\sf (3+\frac{2}{i})(i^6-i^7)(1+i^{11})=

\implies \sf (3+\frac{2}{i})(-1-(-i)) (1+(-i))

\implies \sf (3+\frac{2}{i})(-1+i)(1-i)

\implies \sf (-3+3i-\frac{2}{i}+2)(1-i)

\implies \sf (-1+3i-\frac{2}{i})(1-i)

\implies \sf -1+i+3i-3i^2-\frac{2}{i}+2

\implies \sf -1+4i+3-(\frac{2-2i}{i})

\implies \sf 4i + 2-(\frac{2-2i}{i})

\implies \sf (\frac{4i^2+2i-2+2i}{i})

\implies \sf (\frac{-4+4i-2}{i})

\implies \sf (\frac{-6+4i}{i})

\implies \sf (\frac{(4i-6)\times(i)}{i\times i}

\implies \sf (\frac{-4-6i}{-1})

\implies \boxed{\boxed{\boxed{\boxed{\sf 4+6i}}}}

Similar questions