Math, asked by bpchoudhary1949, 20 days ago

find the value of angle A

Attachments:

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Let assume that the given right-angled triangle is XYZ, right angled at X, such that XY = y and XZ = x and ∠Y = A and ∠X = 90°.

Now, In right triangle XYZ

\rm \: tanA \:  =  \:  \dfrac{XZ}{XY}  \\

\rm \: tanA \:  =  \:  \dfrac{x}{y} -  -  - (1)  \\

Now, Solution (i), when x = y

\rm \: tanA \:  =  \:  \dfrac{y}{y}  \\

\rm \: tanA \:  =  \:  1  \\

\rm \: tanA \:  =  \:  tan45 \degree  \\

\rm\implies \:A \:  =  \:  45 \degree  \\

Now, Solution (ii)

\rm \: When \: x =  \sqrt{3} \: y \\

So, equation (1), can be rewritten as

\rm \: tanA \:  =  \:  \dfrac{ \sqrt{3}  \: y}{y}  \\

\rm \: tanA \:  =  \: \sqrt{3}   \\

\rm \: tanA \:  =  \:  tan60 \degree  \\

\rm\implies \: A \:  =  \:  60 \degree  \\

Now, Solution - (iii)

\rm \: When \: y =  \sqrt{3} \: x \\

So, equation (1) can be rewritten as

\rm \: tanA \:  =  \:  \dfrac{x}{ \sqrt{3}  \: x}  \\

\rm \: tanA \:  =  \:  \dfrac{1}{ \sqrt{3}}  \\

\rm \: tanA \:  =  \:  tan30 \degree  \\

\rm\implies \: A \:  =  \:  30 \degree  \\

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\sf Trigonometry\: Table \\ \begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\boxed{\begin{array}{ |c |c|c|c|c|c|} \bf\angle A & \bf{0}^{ \circ} & \bf{30}^{ \circ} & \bf{45}^{ \circ} & \bf{60}^{ \circ} & \bf{90}^{ \circ} \\ \\ \rm sin A & 0 & \dfrac{1}{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{ \sqrt{3}}{2} &1 \\ \\ \rm cos \: A & 1 & \dfrac{ \sqrt{3} }{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{1}{2} &0 \\ \\ \rm tan A & 0 & \dfrac{1}{ \sqrt{3} }&1 & \sqrt{3} & \rm \infty \\ \\ \rm cosec A & \rm \infty & 2& \sqrt{2} & \dfrac{2}{ \sqrt{3} } &1 \\ \\ \rm sec A & 1 & \dfrac{2}{ \sqrt{3} }& \sqrt{2} & 2 & \rm \infty \\ \\ \rm cot A & \rm \infty & \sqrt{3} & 1 & \dfrac{1}{ \sqrt{3} } & 0\end{array}}}\end{gathered}\end{gathered}\end{gathered} \end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered}

Attachments:
Answered by diliptalpada66
2

Step-by-step explanation:

\boxed{\underline{\underline{\text{Solution:}}}}\\ \\

we have,

 \\  \tt(i)  x=y^{\circ}

 \\  \\  \tt\tan A=\frac{x}{y}=\frac{x}{x}=1

 \\  \\  \tt\tan A=\tan 45^{\circ}

 \\  \\   \color{purple}\tt\angle A=45^{\circ}

\\ \\ \rule{200pt}{2pt} \\ \\

 \\  \\  \begin{array}{l} \sf(ii) \:  \:  \:  \tt x=\sqrt{3} y  \\  \\  \\  \tt \tan A=\dfrac{x}{y}=\dfrac{\sqrt{3} y}{y}=\sqrt{3}  \\  \\  \\  \tt \tan A=\tan 60^{\circ}  \\ \\ \\   \red{ \tt \angle A = 60 {}^{ \circ} } \end{array}

\\ \\ \rule{200pt}{2pt} \\ \\

 \begin{array}{l} \tt(ii)  \sqrt{3} x=60^{\circ}  \\  \\  \\  \tt\tan A=\dfrac{x}{y}=\dfrac{x}{\sqrt{3} x}=\dfrac{1}{\sqrt{3}}  \\  \\  \\  \tt \tan A=\tan 30^{\circ}  \\  \\  \\   \color{darkcyan}\tt \angle A=30^{\circ} \end{array}

Hence, it is required solution.

Similar questions