find the value of angle A + Angle B + angle C + angle D + angle of the following figure
Attachments:
Answers
Answered by
19
sum of all angles of a polygon of equals (n-2) × 180.
Have a look at the attachment and let those angles in a pentagon inside be a,b,c,d and e .
Now as the no. of sides in a pentagon = 5
Therefore , the sum of all angles in a pentagon = (5-2) 180°
= 3 × 180°
= 540°
Therefore,
a+b+c+d+e = 540° ----(vi)
Now,
In triangle AJC
an. A + an. C + a = 180° ----(i)
similarly in triangle DFB
an. D + an. B + b = 180° ------(ii)
In triangle EGC
an.E + an. C + c = 180° ------(iii)
In triangle AHD
an. A + an. D + d = 180° ------(iv)
In triangleEIB
an. E + an. B + e = 180° ------(v)
Add (i), (ii), (iii), (iv) and (v)
2 ( an. A + an. B + an. C + an. D + an.E ) + a+b+c+d+e = 900°
Using (vi)
2 (an. A + an.B + an. C + an.D + an. E ) + 540° = 900°
2 (an. A + an.B + an. C + an.D+ an.E ) = 900°-540°= 360°
an. A + an.B + an. C + an.D + an. E = 360°/2 = 180°.
Therefore,
angle A + angle B + angle C + angle D + angle E = 180° .
Have a look at the attachment and let those angles in a pentagon inside be a,b,c,d and e .
Now as the no. of sides in a pentagon = 5
Therefore , the sum of all angles in a pentagon = (5-2) 180°
= 3 × 180°
= 540°
Therefore,
a+b+c+d+e = 540° ----(vi)
Now,
In triangle AJC
an. A + an. C + a = 180° ----(i)
similarly in triangle DFB
an. D + an. B + b = 180° ------(ii)
In triangle EGC
an.E + an. C + c = 180° ------(iii)
In triangle AHD
an. A + an. D + d = 180° ------(iv)
In triangleEIB
an. E + an. B + e = 180° ------(v)
Add (i), (ii), (iii), (iv) and (v)
2 ( an. A + an. B + an. C + an. D + an.E ) + a+b+c+d+e = 900°
Using (vi)
2 (an. A + an.B + an. C + an.D + an. E ) + 540° = 900°
2 (an. A + an.B + an. C + an.D+ an.E ) = 900°-540°= 360°
an. A + an.B + an. C + an.D + an. E = 360°/2 = 180°.
Therefore,
angle A + angle B + angle C + angle D + angle E = 180° .
Attachments:
Answered by
0
Answer:
Step-by-step explanation:
Similar questions