Math, asked by jskaur1509, 4 months ago

find the value of angles in the following figure​

Attachments:

Answers

Answered by Anonymous
90

\huge\mathbb{\purple{ANSWER}}

BY EXTERIOR ANGLE SUM PROPERTY

Defination:(An exterior angle of a triangle is equal to the sum of the two opposite interior angles. The sum of exterior angle and interior angle is equal to 180 degrees.)

 ↬ (5x + 10) + 58 = 11x + 2 \\  ↬ 5x + 10 + 58 = 11x + 2 \\  ↬ 68 - 2 = 11x - 5x \\ ↬ 66 = 6x \\  ↬ \frac{66}{6}  = x \\  ↬ 11 = x

Put value of X=11° in equations provided in the question

 ⇝ 5x + 10 \\  ⇝ 5(11) + 10 \\  ⇝ 55 + 10 \\  ⇝ 60 \\  \\  ⇝ 11x + 2  \\  ⇝ 11(11) + 2 \\  ⇝ 121 + 2 \\  ⇝ 123

VERIFICATION

11x+2=(5x+10)+58

put value of x in this equation

⇛11×11+2=(5×11+10)+58

⇛11×11+2=(55+10)+58

⇛121+2=(55+10)+58

⇛121+2=(65)+58

⇛121+2=65+58

⇛123=65+58

⇛123=123

LHS = RHS

Hence verified!

FINAL ANSWER

  • Angle TUA = 11x + 2
  • Angle TUA = 11 × 11 + 2
  • Angle TUA = 121 + 2
  • Angle TUA = 123°

  • Angle UTS = 5x + 10
  • Angle UTS = 5 × 11 + 10
  • Angle UTS = 55 + 10
  • Angle UTS = 65°

\huge\mathbb{\pink{❦ジャクソンそしてハン}}

Attachments:
Answered by DüllStâr
151

\sf\huge \red{Required \:Solution}

We know:

 \bigstar \boxed{ \rm{}Exterior~angle = Sum~of \: interior ~ angles }

 \\

 \boldsymbol{so:}

 \\

 \leadsto \sf11x + 2 = (5x + 10 )+ 58

 \\

 \leadsto \sf11x + 2 = 5x + 10 + 58

 \\

 \leadsto \sf11x + 2 = 5x + 68

 \\

 \leadsto \sf11x  - 5x+ 2 =+ 68

 \\

 \leadsto \sf11x  - 5x =+ 68 - 2

 \\

 \leadsto \sf11x  - 5x =66

 \\

 \leadsto \sf6x =66

 \\

 \leadsto \sf{}x =\dfrac{66}{6}

 \\

 \leadsto \sf{}x =\dfrac{6 \times 11}{6}

 \\

 \leadsto \sf{}x =\dfrac{\cancel6 \times 11}{\cancel6}

 \\

 \leadsto \sf{}x =\dfrac{1 \times 11}{1}

 \\

 \leadsto \sf{}x =1 \times 11

 \\

 \leadsto \underline{\boxed{\sf{} x =11}}

 \\

 \boldsymbol{verification:}

 \\

 \leadsto \sf11x + 2 = (5x + 10 )+ 58

 \\

put value of x in this equation

 \\

 \leadsto \sf11 \times 11+ 2 = (5 \times 11 + 10 )+ 58 \\

 \\

 \leadsto \sf11 \times 11+ 2 = (55+ 10 )+ 58 \\

 \\

 \leadsto \sf121+ 2 = (55+ 10 )+ 58 \\

 \\

 \leadsto \sf121+ 2 = (65 )+ 58 \\

 \\

 \leadsto \sf121+ 2 =65+ 58 \\

 \\

 \leadsto \sf123=65+ 58 \\

 \\

 \leadsto \sf123=123\\

 \\

LHS = RHS

Hence verified!

 \\

  • Angle TUA = 11x + 2
  • Angle TUA = 11 × 11 + 2
  • Angle TUA = 121 + 2
  • Angle TUA = 123°

 \\

  • Angle UTS = 5x + 10
  • Angle UTS = 5 × 11 + 10
  • Angle UTS = 55 + 10
  • Angle UTS = 65°
Similar questions