Math, asked by Mihir1001, 9 months ago

Find the value of below expression :—
 \underline{ \boxed{ \sin \left( \frac{\pi}{14} \right) \sin \left( \frac{3\pi}{14} \right) \sin \left( \frac{5\pi}{14} \right) }}

☺ give step-by-step explanation

☺ class 11

☺ Topic — Trigonometry

☺ #no spam #please

Answers

Answered by pulakmath007
41

\displaystyle\huge\red{\underline{\underline{Solution}}}

 \blacksquare \: TO DETERMINE

 \displaystyle \: sin \:  \frac{\pi}{14} \:  \:  sin \:  \frac{3\pi}{14}  \: \: sin \:  \frac{5\pi}{14}

 \blacksquare \:  \: CALCULATION

\displaystyle \: sin \:  \frac{3\pi}{14} \:   =  sin \:  ( \frac{\pi}{2}  - \frac{4\pi}{14} \: ) = cos\:  \frac{4\pi}{14}

Also

\displaystyle \: sin \:  \frac{5\pi}{14} \:   =  sin \:  ( \frac{\pi}{2}  - \frac{2\pi}{14} \: ) = cos\:  \frac{2\pi}{14}

Let

\displaystyle \:x =  \:  \frac{\pi}{14}

Then

 \displaystyle \: sin \:  \frac{\pi}{14} \:  \:  sin \:  \frac{3\pi}{14}  \: \: sin \:  \frac{5\pi}{14}

 =  \displaystyle \: sin  x\:  \:  cos  4x\: \: cos2x

 =  \displaystyle \: sin  x\:  \:  cos  2x\: \: cos4x

 =  \displaystyle \:  \frac{1}{2cosx}( \:2cosx  sin  x)\:  \:  cos  </u></em></strong><strong><em><u>2</u></em></strong><strong><em><u>x\: \: </u></em></strong><strong><em><u>cos4</u></em></strong><strong><em><u>x

 =  \displaystyle \:  \frac{1}{2cosx}\: sin  2x\:  \:  cos  </u></em></strong><strong><em><u>2</u></em></strong><strong><em><u>x\: \: </u></em></strong><strong><em><u>cos4</u></em></strong><strong><em><u>x

 =  \displaystyle \:  \frac{1}{4cosx}\: (2sin  2x\:   cos  2x)\: \: cos4x

 =  \displaystyle \:  \frac{1}{4cosx}\: sin  4x\:  \:  cos  4x

 =  \displaystyle \:  \frac{1}{8cosx}\: (2sin  4x\:  \:  cos  4x)

 =   \displaystyle \:  \frac{1}{8cosx}\: sin  8x

 =  \displaystyle \:  \frac{1}{8cos \frac{\pi}{14} }\: sin  \frac{ 8\pi}{14}

 =  \displaystyle \:  \frac{1}{8cos \frac{\pi}{14} }\: sin( \frac{\pi}{2}    +   \frac{ \pi}{14} )

 =  \displaystyle \:  \frac{1}{8cos \frac{\pi}{14} }\: cos \frac{ \pi}{14}

 =  \displaystyle \:  \frac{1}{8}

Answered by FFAkashbhai1
0

Answer:

Find the value of below expression :—

 \underline{ \boxed{ \sin \left( \frac{\pi}{14} \right) \sin \left( \frac{3\pi}{14} \right) \sin \left( \frac{5\pi}{14} \right) }}

☺ give step-by-step explanation

☺ class 11

☺ Topic — Trigonometry

☺ #no spam #please

Similar questions