find the value of beta by a alpha + b + alpha by a beta + b,where alpha + beta is equal to minus b by a and Alpha into beta is equals to C by a.
Answers
Answer:
oots of a quadratic equation
We learned on the previous page (The Quadratic Formula), in general there are two roots for any quadratic equation \displaystyle{a}{x}^{2}+{b}{x}+{c}={0}ax
2
+bx+c=0. Let's denote those roots \displaystyle\alphaα and \displaystyle\betaβ, as follows:
\displaystyle\alpha=\frac{{-{b}+\sqrt{{{b}^{2}-{4}{a}{c}}}}}{{{2}{a}}}α=
2a
−b+
b
2
−4ac
and
\displaystyle\beta=\frac{{-{b}-\sqrt{{{b}^{2}-{4}{a}{c}}}}}{{{2}{a}}}β=
2a
−b−
b
2
−4ac
Sum of the roots α and β
We can add \displaystyle\alphaα and \displaystyle\betaβ as follows:
\displaystyle\alpha+\beta=\frac{{-{b}+\sqrt{{{b}^{2}-{4}{a}{c}}}}}{{{2}{a}}}+\frac{{-{b}-\sqrt{{{b}^{2}-{4}{a}{c}}}}}{{{2}{a}}}α+β=
2a
−b+
b
2
−4ac
+
2a
−b−
b
2
−4ac
\displaystyle=\frac{{-{2}{b}+{0}}}{{{2}{a}}}=
2a
−2b+0
\displaystyle=-\frac{b}{{a}}=−
a
b
Product of the roots α and β
We can multiply \displaystyle\alphaα and \displaystyle\betaβ as follows. First, recall that in general,
\displaystyle{\left({X}+{Y}\right)}{\left({X}-{Y}\right)}={X}^{2}-{Y}^{2}(X+Y)(X−Y)=X 2 −Y 2 and
\displaystyle{\left(\sqrt{{{X}}}\right)}^{2}={X}( X)2 =X
We make use of these to obtain:
\displaystyle\alpha\times\beta=\frac{{-{b}+\sqrt{{{b}^{2}-{4}{a}{c}}}}}{{{2}{a}}}\times\frac{{-{b}-\sqrt{{{b}^{2}-{4}{a}{c}}}}}{{{2}{a}}}α×β= 2a−b+ b 2 −4ac × 2a−b− b 2 −4ac
\displaystyle=\frac{{{\left(-{b}\right)}^{2}-{\left(\sqrt{{{b}^{2}-{4}{a}{c}}}\right)}^{2}}}{{\left({2}{a}\right)}^{2}}= (2a) 2(−b) 2 −( b 2 −4ac ) 2
\displaystyle=\frac{{{b}^{2}-{\left({b}^{2}-{4}{a}{c}\right)}}}{{{4}{a}^{2}}}= 4a 2b2 −(b 2 −4ac)
\displaystyle=\frac{{{4}{a}{c}}}{{{4}{a}^{2}}}= 4a24ac
\displaystyle=\frac{c}{{a}}= ac
Summary
The sum of the roots \displaystyle\alphaα and \displaystyle\betaβ of a quadratic equation are:
\displaystyle\alpha+\beta=-\frac{b}{{a}}α+β=−ab
The product of the roots \displaystyle\alphaα and \displaystyle\betaβ is given by:
\displaystyle\alpha\beta=\frac{c}{{a}}αβ= ac
It's also important to realize that if \displaystyle\alphaα and \displaystyle\betaβ are roots, then:
\displaystyle{\left({x}-\alpha\right)}{\left({x}-\beta\right)}={0}(x−α)(x−β)=0
We can expand the left side of the above equation to give us the following form for the quadratic formula:
\displaystyle{x}^{2}-{\left(\alpha+\beta\right)}{x}\alpha\beta={0}x 2
−(α+β)x+αβ=0
Let's use these results to solve a few problems.