Math, asked by prakriti52, 1 year ago

find the value of c for which quadratic equation 4x square -2 ( C + 1 ) X +(c+ 4 )has equal roots

Answers

Answered by abhi569
7

 \bold {Equation : 4x^{2} - 2( c + 1 ) x + ( c + 4 ) } \\  \\  \\  \mathbf{<br />On \:  \:  comparing  \:  \: the \:  \:  given  \:  \: equation  \:  \: with \:  \:  ( ax^{2} + bx + c ) , we \:  \:  get  \:  \:    \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   [ a, b \:  \:  and \:  \:  c \:  \:  are  \:  \: variables  \:  \: which \:  \:  are  \:  \: taken  \:  \: to  \:  \: show  \:  \: the \:  \:  quadratic equation ]  \:  \: }<br /> \\  \\ <br />a = 4 \\ <br />b = -2( c + 1 )  \\ <br />c = ( c + 4 )





We know, Discriminant = b^{2} - 4ac


=> [ -2( c + 1 ) ]² - 4[ 4 × ( c + 4 )


=> [ 4( c + 1 )² ] - 4( 4c + 16 )


=> 4( c² + 1 + 2c ) - 4( 4c + 16 )


=> 4( c² + 1 + 2c - 4c - 16 )


=> 4( c² + 1 - 16 + 2c - 4c )


=> 4( c² - 15 - 2c )



\large{ Note }: For  \:  \: equal \:  \:  roots,  \:  \: discriminant  = 0





Hence,

=> 4( c² - 15 - 2c ) = 0


=> c² - 2c - 15 = 0


=> c² - ( 5 - 3 ) c - 15 = 0


=> c² - 5c + 3c - 15 = 0


=> c( c - 5 ) + 3( c - 5 ) = 0


=> ( c - 5 ) ( c + 3 ) = 0



 \text{By Zero Product Rule, }




=> c = 5 or c = -3
Similar questions