Math, asked by cristina7671, 1 year ago

Find the value of c if a is a unit vector 2i+cj-9k

Answers

Answered by Anonymous
16

\Huge{\underline{\underline{\mathfrak{Correct \ Question \colon}}}}

Find the value of 'c' from the following,if a is an unit vector

 \large{ \sf{a = 2 \hat{i} + c \hat{j} - 9 \hat{k}}}

\Huge{\underline{\underline{\mathfrak{Answer \colon}}}}

Given that a is an unit vector » It has an magnitude 1

 \implies \:  \sf{1 =  \sqrt{2 {}^{2} + c {}^{2}  + ( - 9) {}^{2}  } }

Squaring on both sides,we get :

 \implies \:  \sf{1 = c {}^{2} + 4 + 81 } \\  \\  \implies \:  \sf{c {}^{2} + 85 = 1 } \\  \\  \implies \:  \sf{c {}^{2}  =  - 84} \\  \\  \implies \:  \sf{c =  \sqrt{- 84} } \\  \\   \implies \boxed{\boxed{\sf{c = 2 \sqrt{21} \iota \ units}}}

Answered by Sharad001
107

Question :-

 \sf{\red{find \: the \: value \: of \: c \: if \: it \: is \: }}\\   \sf{\green{a \: unit \: vector} }\\  \sf{ a \:  =\blue{ 2 \hat{i} + c \hat{j} - 9 \hat{k}}}

Answer :-

 \rightarrow \: \boxed{\sf{ c \:  =  \red{\sqrt{ - 84} }} }\:

To find :-

→ Value of "c",

________________________________

Formula used :-

\sf{  \red{if \: a \:}  = \green{x \hat{i} + y \hat{j} \:  + z \hat{k}}}  \:  \:  \:  \: .......(1)\\  \\   \sf{|a| \:  = \blue{ \sqrt{ {x}^{2}  +  {y}^{2} +  {z}^{2} } } }

Solution :-

Given that, it is unit vector therefore its magnitude is 1.

Hence,

 \sf{\red{comparing \: between \: the\: given \:} } \\ \sf{ \green{vector \:   and \: eq(1)}}\\ \\ \sf{ we \: get \: } \\  \rightarrow \sf{x \:  = 2 \:,  \: y = c \: , \: z =  - 9} \\   \\  \implies \sf{ \red{1 = } \green{\sqrt{ {(2)}^{2}  +  {(c)}^{2}  +  {( - 9)}^{2} }}}  \:  \\  \\   \implies \sf{ 1 =  \red{\sqrt{4 + 81 +  {c}^{2} } } }\\  \\  \implies \sf{1 =  \blue{\sqrt{85 +  {c}^{2} } } }\\  \\ \sf{\pink{squaring \: on \: both \: sides}} \\  \\   \implies \sf{ 1 = \red{85 +  {c}^{2} } }\\  \\  \implies \sf{  {c}^{2}  = 1 - 84} \\  \\  \implies  \boxed{\sf{ c \:  = \green{ \sqrt{ - 84} }}}

_______________________________

Similar questions