Math, asked by agrapujya7, 5 months ago

Find the value of c
 \frac{c}{ \sqrt{c ^{2} - 4 } }  =  \sqrt{3}

Answers

Answered by Anonymous
17

Answer

\sf \frac{c}{ \sqrt{c ^{2} - 4 } } = \sqrt{3}

\sf c =  \sqrt{3}  \times  \sqrt{ {c}^{2} - 4}

\sf c =  \sqrt{3( {c}^{2}  - 4)}

\sf c =  \sqrt{3 {c}^{2}  - 12}

Squaring both the side :-

\sf {c}^{2}  = 3 {c}^{2} - 12

\sf 3 {c}^{2}  -  {c}^{2}  = 12

\sf 2 {c}^{2}  = 12

\sf {c}^{2}  =  \frac{12}{2}

\sf {c}^{2}  = 6

\boxed{\sf c = \sqrt{6}}

Similar questions