Math, asked by adityarajar8678, 1 year ago

find the value of cos^-1(2x-1)



Answers

Answered by ankit8947
5
is this cos inverse (2x-1)
then the answer is , 2cos inverse √x.

adityarajar8678: but bro how
adityarajar8678: ya that was cos inverse
ankit8947: let x = cos^2theta
Answered by Anonymous
3

The value of  cos^{-1}(2x - 1) = 2cos^{-1}\sqrt{x}

  • We have,

         cos^{-1}(2x - 1)

        Let x = cos^{2}\alpha

        ∴ \alpha = cos^{-1}\sqrt{x}     - (1)

  • Now,

          cos^{-1}(2x - 1) = cos^{-1}(2cos^{2}\alpha   - 1)

                                 = cos^{-1}( cos2\alpha  )

                                = 2\alpha ( As cos^{-1}(cosA) = A )

  • Now putting the value of \alpha from (1) in the above equation, we get

          cos^{-1}(2x - 1) = 2 cos^{-1}\sqrt{x}

          ∴ the answer is 2cos^{-1}\sqrt{x}

Similar questions