find the value of cos-(1410)°
Answers
Answered by
2
Let us first convert angle given in degree to radian:
−1410°=−1410(π/180)=−(47/3)π=−(8–1/6)π−1410°=−1410(π/180)=−(47/3)π=−(8–1/6)π
So,
cosec(−1410°)=cosec(−8–1/6π)cosec(−1410°)=cosec(−8–1/6π)
# cosec(−x)=−cosec(x)cosec(−x)=−cosec(x), then:
cosec(−1410)=−cosec(8–1/6π)cosec(−1410)=−cosec(8–1/6π)
cosec(−1410)=−cosec(8–1/6π)cosec(−1410)=−cosec(8–1/6π)
#As we know that after an interval of 2π, values ofcoseccosecrepeat. Then:
cosec(−1410)=−cosec(8–1/6π)cosec(−1410)=−cosec(8–1/6π)
cosec(−1410)=−cosec(–1/6π)cosec(−1410)=−cosec(–1/6π)
cosec(−1410)=cosec(1/6π)cosec(−1410)=cosec(1/6π)
cosec(−1410)=cosec(30°)cosec(−1410)=cosec(30°)
cosec(−1410)=1/sin(30°)cosec(−1410)=1/sin(30°)
cosec(−1410)=1/(1/2)cosec(−1410)=1/(1/2)
cosec(−1410)=2cosec(−1410)=2
is the solution.
Hope it helps........!
−1410°=−1410(π/180)=−(47/3)π=−(8–1/6)π−1410°=−1410(π/180)=−(47/3)π=−(8–1/6)π
So,
cosec(−1410°)=cosec(−8–1/6π)cosec(−1410°)=cosec(−8–1/6π)
# cosec(−x)=−cosec(x)cosec(−x)=−cosec(x), then:
cosec(−1410)=−cosec(8–1/6π)cosec(−1410)=−cosec(8–1/6π)
cosec(−1410)=−cosec(8–1/6π)cosec(−1410)=−cosec(8–1/6π)
#As we know that after an interval of 2π, values ofcoseccosecrepeat. Then:
cosec(−1410)=−cosec(8–1/6π)cosec(−1410)=−cosec(8–1/6π)
cosec(−1410)=−cosec(–1/6π)cosec(−1410)=−cosec(–1/6π)
cosec(−1410)=cosec(1/6π)cosec(−1410)=cosec(1/6π)
cosec(−1410)=cosec(30°)cosec(−1410)=cosec(30°)
cosec(−1410)=1/sin(30°)cosec(−1410)=1/sin(30°)
cosec(−1410)=1/(1/2)cosec(−1410)=1/(1/2)
cosec(−1410)=2cosec(−1410)=2
is the solution.
Hope it helps........!
Answered by
0
Answer:
cosec(-1410)
-cosec(4×360-30)
cosec30°=2
Similar questions
India Languages,
8 months ago
Social Sciences,
8 months ago
Biology,
1 year ago
Hindi,
1 year ago
Math,
1 year ago