Math, asked by kaviyaarunadevi, 1 year ago

Find the value of cos 22°30'

Answers

Answered by MaheswariS
2

\textbf{To find:}

cos\,22.5^{\circ}

\text{We know that the following trigonometry identity}

\boxed{\bf\;cosA=2\,cos^2{\frac{A}{2}}-1}

\implies\,cos^2{\frac{A}{2}}=\frac{1+cosA}{2}

\text{Put $A=45^{\circ}$}

cos^2({\frac{45^{\circ}}{2}})=\frac{1+cos45^{\circ}}{2}

\implies\,cos^2{22.5^{\circ}}=\frac{1+\frac{1}{\sqrt2}}{2}

\implies\,cos^2{22.5^{\circ}}=\frac{\sqrt{2}+1}{2\sqrt2}}

\implies\bf\,cos{22.5^{\circ}}=\sqrt{\frac{\sqrt{2}+1}{2\sqrt2}}

\therefore\textbf{The value of $\bf\,cos\,22^{\circ}5'$ is $\bf\sqrt{\frac{\sqrt{2}+1}{2\sqrt2}}$}

Similar questions