Math, asked by basketballbonap26508, 1 year ago

find the value of cos 45 / sec30 + cosec 30

Answers

Answered by Anonymous
19
Cos 45 / Sec 30 + Cosec 30
=(1/root 2)÷(2/root 3) + 2
=(1×root3)÷(2root2)+2
=(root3+4×root2)÷2×root2.
Answered by mindfulmaisel
7

The \ value \ of \ \frac{\left(\cos 45^{\circ}\right)}{\sec 30^{\circ}+\csc 30^{\circ}} = \frac{3 \sqrt{2} - \sqrt{6}}{8}

Given:

\cos 45^{\circ}, \sec 30^{\circ}, \csc 30^{\circ}

To find:

\frac{\left(\cos 45^{\circ}\right)}{\sec 30^{\circ}+\csc 30^{\circ}} = ?

Solution:

\cos 45^{\circ} = \frac{1}{\sqrt{2}}

\sec 30^{\circ} = \frac{2}{\sqrt{3}}

\csc 30^{\circ} = 2

\frac{\left(\cos 45^{\circ}\right)}{\sec 30^{\circ}+\csc 30^{\circ}} = \frac{\frac{1}{\sqrt{2}}}{\left(\frac{2}{\sqrt{3}}+2\right)}

= \frac{\frac{1}{\sqrt{2}}}{\frac{(2+2 \sqrt{3})}{\sqrt{3}}}

\Rightarrow \frac{\left(\cos 45^{\circ}\right)}{\sec 30^{\circ}+\csc 30^{\circ}} = \frac{1}{\sqrt{2}} \times \frac{\sqrt{3}}{(2(1+\sqrt{3}))}

Rationalizing the denominator,

\Rightarrow\left(\frac{1}{\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}}\right) \times\left(\frac{\sqrt{3}}{(2(1 + \sqrt{3}))} \times \frac{1 - \sqrt{3}}{1-\sqrt{3}}\right)

= \frac{\sqrt{2}}{2} \times \frac{\sqrt{3}(1-\sqrt{3})}{2(1-3)}

= \frac{\sqrt{2}}{2} \times \frac{\sqrt{3}-3}{-4}

= - \frac{\sqrt{6}-3 \sqrt{2}}{8}

\Rightarrow \frac{\left(\cos 45^{\circ}\right)}{\sec 30^{\circ}+\csc 30^{\circ}} = \frac{3 \sqrt{2}-\sqrt{6}}{8} \frac{3 \sqrt{2}-\sqrt{6}}{8}

Similar questions