Math, asked by vaishnavkumbhar97, 1 month ago

Find the value of cos(4x) if (3)/(1-cos(x)-sin(x))=4

Answers

Answered by amitnrw
2

cos (4x)  =  -97/128 if 3/(1 - cosx  - sinx)  = 4

Given : 3/(1 - cosx  - sinx)  = 4

To Find : cos (4x)

3/(1 - cosx  - sinx)  = 4

=> 3 = 4 -  4(cosx + six)

=> -1 = -4(cosx + six)

=> (cosx + sinx) = 1/4

Squaring both sides

cos²x + sin²x + 2cosxsinx  = 1/16

Identity cos²x + sin²x = 1   and sin(2x) = 2sinxcosx

=> 1 +   sin(2x)  = 1/16

=> sin(2x) = -15/16

Identity cos(2x) =  1- 2sin²x

cos(4x) = 1 - 2sin²(2x)

Substitute  sin(2x) = -15/16

=> cos(4x) = 1 - 2( -15/16)²

=> cos (4x) = 1 - 2(225/256)

=> cos(4x)  =  (256 - 450)/256

=> cos(4x) =  -194/256

=> cos (4x)  =  -97/128

=> cos (4x)  =  -0.7578125

Learn More:

Prove that sinα + sinβ + sinγ − sin(α + β+ γ) = 4sin(α+β/2)sin(β+γ

brainly.in/question/10480120

Ifsin 990° sin 780° sin 390°+=K(tan 405° – tan 360°) then Kicos 540 ...

brainly.in/question/22239477

Maximum value of sin(cos(tanx)) is(1) sint (2)

brainly.in/question/11761816

evaluate cot[90-theta].sin[90-theta] / sin theta+cot 40/tan 50 - [cos ...

brainly.in/question/2769339

Similar questions