Math, asked by Mister360, 3 months ago

Find the value of cos 570° sin 510° + sin (-330°) cos (-390°).

Answers

Answered by ItzMeMukku
2

Step-by-step explanation:

\begin{matrix} \cos { 570^{ 0 } } \cdot \sin { 510^{ 0 } } +\sin  \left( { -{ { 33 }^{ 0 } } } \right) \cdot \cos  \left( { -{ { 390 }^{ 0 } } } \right)  \\ { { degree } }\, \, { { change } }\, \, \, { { into } }\, \, { { radius } } \\ \Rightarrow \cos  \left( { \pi +{ { 30 }^{ 0 } } } \right) \cdot \sin  \left( { 3\pi -{ { 30 }^{ 0 } } } \right) -\sin  \left( { 2\pi -{ { 30 }^{ 0 } } } \right) \cos  \left( { 2\pi +3 } \right)  \\ \Rightarrow -\cos { 30^{ 0 } } \times \sin { 30^{ 0 } } +\sin { 30^{ 0 } } \times \cos { 30^{ 0 } }  \\ \Rightarrow \frac { { -\sqrt { 3 }  } }{ 2 } \times \frac { 1 }{ 2 } +\frac { 1 }{ 2 } \times \frac { { \sqrt { 3 }  } }{ 2 } =0\, \, \, \, \, \, \, Ans \\  \end{matrix}

=Please slide to see full Answer

Answered by Anonymous
13

 \huge \large \bold{Answer}

  \small\mapsto \cos570°. \sin510° +  \sin( - 330°)

 \mapsto570° = 540° + 30° = 3\pi +  \frac{\pi}{6}

  \mapsto \cos(3\pi +\frac{ \pi}{6} ).\sin(3\pi - \frac{\pi}{6}) - \:  \:  \:  \:  \sin(2\pi -  \frac{\pi}{6} ) \cos(2\pi +  \frac{\pi}{6} ) -  \cos \frac{\pi}{6} . \sin \frac{\pi}{6 }  +  \sin \frac{\pi}{6}. \cos \frac{\pi}{6}  = 0

Similar questions