find
the value
of
Cos 6° Cos 42° Cos 66° Cos 78°
Answers
Answered by
4
Answer:
(cos 6°)(cos 42°)(cos 66°)(cos 78°)
=(cos6°cos66°)(cos42°cos78°)
{multiplying and dividing by 2*2}
= (1/4)[2cos6°cos66°] [2cos42°cos78°]
{2cosAcosB= cos(A+B)+cos(A-B)}
= (1/4)(cos72° + cos60°)(cos120° + cos36°)
= (1/4)(cos72° + 1/2)(- 1/2 + cos36°)
= (1/4) [- 1/4 + (1/2) (cos36° - cos72°) + cos36° cos72°]
= (1/4) [- 1/4 + sin54°sin18° + sin54° sin18°]
{multiplying and dividing by cos18°}
= (1/4) [- 1/4 + 2sin54°sin18°cos18° / cos18°]
{2sinAcosA=sin2A}
{multiplying and dividing by 2}
= (1/4) [- 1/4 + 2sin54°sin36° / 2cos18°]
{2sinAsinB=cos(A-B)-cos(A+B)}
= (1/4) [- 1/4 + (cos18° - cos90°) / 2cos18°]
= (1/4) [- 1/4 + 1/2]
= 1/16
Similar questions