Find the value of Cos 75
Answers
Answered by
1
Answer:
We can write 75o as the sum of 45o and 30o
Therefore,
cos 75o = cos (30+45)o
From trigonometric formulae,
cos (x + y) = cos x cos y - sin x sin y
Taking x = 30 and y = 45 we get,
cos 75o = cos (30 + 45)o
cos 75o = cos 30o × cos 45o – sin 30o × sin 45o --------(i)
From trigonometric table values we have,
cos 30o = √3 /2
sin 30o = 1/2
sin 45o = cos 45o = 1/√2
Substituting these values in equation (i)
cos 75o = √3/2 × 1/√2 – 1/2 × 1/√2
⇒ cos 75o = (√3-1) / 2√2
Thus, the value of cos 75o is (√3-1) / 2√2.
Answered by
2
Answer:
cos 75°= cos(45°+30°)
=cos 45° cos 30° - sin 45° sin 30°
=1/✓2. × ✓3/2 - 1/✓2 × 1/2
=✓3-1/2✓2
Attachments:
Similar questions