Math, asked by rutvik91, 3 months ago

Find the value of: cos(theta-pi)​​

Answers

Answered by virance87
1

Step-by-step explanation:

 \cos( \theta  - \pi)  \\  \\ we \:  \: can \:  \: write \:  \: this \:  \: as \:  \:  \\  \\  \cos( - (\pi-  \theta ))  \\  \\ for \:  \: cos \\  \\  \cos( - ( \pi -  \theta ) )  =  \cos(\pi -  \theta )  \\  \\ and \:  \: cos(\pi -  \theta ) =  \cos( \theta)  \\  \\ so \:  \: ans \:  \: is \: \\  \\  \cos( \theta )

please mark as brailiest answer

Answered by snehanandy72
0

Step-by-step explanation:

We use the Formula #: cos(A+B)=cosAcosB-sinAsinB#

Letting, #A=, &, B=pi#, we get,

#cos(x+pi)=cosxcospi-sinxsinpi#

Since, #cospi=-1, and, sinpi=0#,

#cos(x+pi)=-cosx#.

Similar questions