Math, asked by shiva2401, 10 hours ago

Find the value of cos12°cos24°cos36°cos48°cos72°cos96°

Answers

Answered by senboni123456
5

Step-by-step explanation:

We have,

 \tt{ cos(12\degree) \cdot cos(24\degree) \cdot \: cos(36\degree) \cdot \: cos(48\degree) \cdot \: cos(72\degree) \cdot \:cos(96\degree)  }

Let 12°=θ

So,

 \tt{ cos( \theta) \cdot cos(2 \theta) \cdot \: cos(3 \theta) \cdot \: cos(4 \theta) \cdot \: cos(6\theta) \cdot \:cos(8 \theta)  }

 \tt{  = cos( \theta)  \: cos(2 \theta)  \: cos(4 \theta) \: cos(8 \theta) \cdot \: cos(3 \theta) \: cos(6\theta)}

 \tt{  = cos( \theta)  \: cos(2 \theta)  \: cos( {2}^{2} \theta) \: cos( {2}^{3}  \theta) \cdot \: cos(3 \theta) \: cos(6\theta)}

 \displaystyle  \boxed{ \bf{We \:  \: know, \:  \:  \:  \prod^{n - 1}_{k = 0}  cos \left(2^{k}   \phi\right)   =  \dfrac{ sin( {2}^{n}  \:  \phi ) }{ {2}^{n} \cdot  \: sin( \phi)  }}}

So,

 \tt{  = \dfrac{ sin( {2}^{4}  \: \theta) }{ {2}^{4}  \:  sin( \theta) } \cdot \: cos(3 \theta) \: cos(6\theta)}

 \tt{  = \dfrac{ sin( 16  \times 12 \degree) }{ 16 \:  sin( 12 \degree) } \cdot \: cos(36 \degree) \: cos(7 2\degree)}

 \tt{  = \dfrac{ sin( 192\degree) }{ 16 \:  sin( 12 \degree) } \cdot \: cos(36 \degree) \: cos(7 2\degree)}

 \tt{  = \dfrac{ sin( 180\degree + 12 \degree) }{ 16 \:  sin( 12 \degree) } \cdot \: cos(36 \degree) \: cos(7 2\degree)}

 \tt{  =  - \dfrac{ sin(  12 \degree) }{ 16 \:  sin( 12 \degree) } \cdot \: cos(36 \degree) \: cos(7 2\degree)}

 \tt{  =  - \dfrac{ 1}{ 16 } \cdot \: cos(36 \degree) \: cos(7 2\degree)}

 \tt{  =  - \dfrac{ 1}{ 16 } \cdot \: cos(36 \degree) \: cos(2 \times 36\degree)}

 \tt{  =  - \dfrac{ 1}{ 16 } \cdot \: \dfrac{ sin( {2}^{2}  \times 36 \degree) }{ {2}^{2}  \cdot sin(36 \degree) }}

 \tt{  =  - \dfrac{ 1}{ 16 } \cdot \: \dfrac{ sin( 4  \times 36 \degree) }{ 4  \times  sin(36 \degree) }}

 \tt{  =  - \dfrac{ 1}{ 16 } \cdot \: \dfrac{ sin( 144 \degree) }{ 4  \times  sin(36 \degree) }}

 \tt{  =  - \dfrac{ 1}{ 16 } \cdot \: \dfrac{ sin( 180\degree - 36 \degree) }{ 4  \times  sin(36 \degree) }}

 \tt{  =  - \dfrac{ 1}{ 16 } \cdot \: \dfrac{ sin(  36 \degree) }{ 4  \times  sin(36 \degree) }}

 \tt{  =  - \dfrac{ 1}{ 16 } \cdot \: \dfrac{ 1 }{ 4  }}

 \tt{  =  - \dfrac{ 1}{64 }}

Answered by mathdude500
7

\large\underline{\sf{Solution-}}

Given Trigonometric expression is

\rm :\longmapsto\:cos12\degree cos24\degree cos36\degree cos48\degree cos72\degree cos96\degree

can be re-arranged as

\rm =\bigg[ cos12\degree cos24\degree cos48\degree cos96\degree \bigg]\bigg[cos36\degree cos72\degree \bigg]

We know

 \red{\rm :\longmapsto\:\boxed{\tt{ cos36\degree  =  \frac{ \sqrt{5} + 1}{4}}}}

and

 \red{\rm :\longmapsto\:\boxed{\tt{ cos72\degree  =  \frac{ \sqrt{5}  -  1}{4}}}}

and Let assume that, x = 12°

So, above expression can be rewritten as

\rm = cosx \: cos2x \: cos4x \: cos8x \times \bigg[\dfrac{ \sqrt{5}  + 1}{4} \times \dfrac{ \sqrt{5}  - 1}{4}  \bigg]

\rm = cosx \: cos2x \: cos {2}^{2} x \: cos {2}^{3} x \times \bigg[\dfrac{ (\sqrt{5})^{2} -  {1}^{2} }{16} \bigg]

We know,

\boxed{\tt{ cosx \: cos2x \: cos {2}^{2}x \: -  -  -  \: cos {2}^{n}x =  \frac{sin {2}^{n + 1} x}{ {2}^{n + 1} sinx}}}

So, using this, we get

\rm \:  =  \: \dfrac{sin {2}^{3 + 1} x}{ {2}^{3 + 1}sinx}  \times \dfrac{5 - 1}{16}

\rm \:  =  \: \dfrac{sin {2}^{4} x}{ {2}^{4}sinx}  \times \dfrac{4}{16}

\rm \:  =  \: \dfrac{sin16 x}{16sinx}  \times \dfrac{1}{4}

\rm \:  =  \: \dfrac{sin16(12\degree )}{64 \: sin12\degree }

\rm \:  =  \: \dfrac{sin192\degree }{64 \: sin12\degree }

\rm \:  =  \: \dfrac{sin(180\degree + 12\degree ) }{64 \: sin12\degree }

\rm \:  =  \: \dfrac{ - sin(12\degree ) }{64 \: sin12\degree }

\rm \:  =  \:  -  \: \dfrac{1}{64}

Hence,

\:\boxed{\tt{ cos12\degree cos24\degree cos36\degree cos48\degree cos72\degree cos96\degree  =  -  \:  \frac{1}{64}}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information

\boxed{\tt{ sin54\degree  = cos36\degree  =  \frac{ \sqrt{5} + 1 }{4} \: }}

\boxed{\tt{ sin18\degree  = cos72\degree  =  \frac{ \sqrt{5}  -  1 }{4} \: }}

\boxed{\tt{ sin36\degree  = cos54\degree  =  \frac{ \sqrt{10 - 2 \sqrt{5} } }{4}  \: }}

\boxed{\tt{ sin72\degree  = cos18\degree  =  \frac{ \sqrt{10 + 2 \sqrt{5} } }{4}  \: }}

Similar questions