Find the value of Cos2A(1 + Tan2A)
Answers
Answered by
8
Find the value of Cos2A(1 + Tan2A)
Identities Used :
- sec^2 a - tan^2 a = 1
- sec^2 a = 1 / cos^2 a
Answered by
3
Answer:
cos2a(1+tan2a)
{cos}^{2} a( {sec}^{2} a - {tan}^{2} a + {tan}^{2} a)cos2a(sec2a−tan2a+tan2a)
{cos}^{2} a( { \sec}^{2} a)cos2a(sec2a)
{cos}^{2} a( \frac{1}{ {cos}^{2}a } )cos2a(cos2a1)
11
Identities Used :
sec^2 a - tan^2 a = 1
sec^2 a = 1 / cos^2 a
Similar questions