Math, asked by maruppallysrinath8, 9 months ago

Find the value of Cos2A(1 + Tan2A)​

Answers

Answered by karankirat345
8

\color{green}\large\underline{\underline{Hello...}}

\color{red}\large\underline{\underline{Question:}}

Find the value of Cos2A(1 + Tan2A)

\color{blue}\large\underline{\underline{Answer:}}

 {cos}^{2} a(1 +  {tan}^{2} a)

 {cos}^{2} a( {sec}^{2} a -  {tan}^{2} a +  {tan}^{2} a)

 {cos}^{2} a( { \sec}^{2} a)

 {cos}^{2} a( \frac{1}{ {cos}^{2}a } )

1

Identities Used :

  • sec^2 a - tan^2 a = 1
  • sec^2 a = 1 / cos^2 a

\color{magenta}\large\boxed{\boxed{Be... Brainly...!!!}}

Answered by jiya91729
3

Answer:

cos2a(1+tan2a)

{cos}^{2} a( {sec}^{2} a - {tan}^{2} a + {tan}^{2} a)cos2a(sec2a−tan2a+tan2a)

{cos}^{2} a( { \sec}^{2} a)cos2a(sec2a)

{cos}^{2} a( \frac{1}{ {cos}^{2}a } )cos2a(cos2a1)

11

Identities Used :

sec^2 a - tan^2 a = 1

sec^2 a = 1 / cos^2 a

Similar questions