Math, asked by Reyansh05, 11 months ago

Find the value of :-

(cosA + sinA )^2 + ( cosA - sinA )^2

Answers

Answered by seenu001
9

Answer:

(cos \: a \:  +  \: sin \: a) ^{2}  \:  +  \: (cos \: a \:  -  \: sin \: a)^{2}

=>

(cos^{2}a  +  sin^{2}a + 2sina \times cosa) + (cos^{2}a  +  sin^{2}a - 2sina \times cosa)

=>

2(cos^{2}a + sin^{2})

=>

2 \times 1

=> 2


yashsingh221208: thanx for helping rehan
Answered by silvershades54
3

Step-by-step explanation:

CosA +sinA = √2cosA

squaring

⇒(cosA + sin A)² = (√2cosA)²

⇒cos²A + sin²A + 2sinAcosA = 2cos²A

⇒1 - sin²A + 1 - cos²A + 2sinAcosA = 2cos²A

⇒2 - 2cos²A = cos²A + sin²A - 2sinAcosA 

⇒2(1 - cos²A)= (cosA - sinA)²

⇒ cosA - sinA = √[2sin²A]

⇒cosA-sinA = √2sinA

hence proved✔️✔️✔️

Similar questions