Math, asked by monudivya14336, 1 year ago

find the value of cosec^2 theta (1 +cos theta) (1-sin theta)​

Answers

Answered by himanshivarshney23
11

I hope my answer is correct

Attachments:
Answered by ihrishi
26

Answer:

 {cosec}^{2}  \theta \: (1 + cos \theta) \: (1  -  sin \theta) \\  =  \frac{ (1 + cos \theta) \: (1  -  sin \theta)}{ {sin}^{2} \theta }  \\  = \frac{ (1 + cos \theta) \: (1  -  sin \theta)}{1 -  {cos}^{2} \theta } \\  = \frac{ (1 + cos \theta) \: (1  -  sin \theta)}{(1 -  {cos}\theta) \times  (1  +  {cos}\theta)} \\  = \frac{ (1  -  sin \theta)}{(1 -  {cos}\theta) }

Similar questions