Math, asked by Saher06, 1 year ago

find the value of cosec^2 theta(1+cos theta)(1+sin theta)​

Answers

Answered by MightyDonode
2

(1+sin(x))/(1-cos(x))

Answered by sharonr
3

cosec^2\ \theta(1+cos\ \theta)(1+sin\ \theta) = \frac{1+sin\ \theta}{1-cos\ \theta}

Solution:

Given that,

We have to find the value of :

cosec^2\ \theta(1+cos\ \theta)(1+sin\ \theta) --------- eqn 1

We know that,

cosec\ \theta = \frac{1}{sin\ \theta}

Therefore, eqn 1 becomes,

\frac{(1+cos\ \theta)(1+sin\ \theta)}{sin^2\ \theta} --------- eqn 2

By trignometric identity,

sin^2\ \theta + cos^2\ \theta = 1\\\\sin^2\ \theta = 1 -  cos^2\ \theta

Thus eqn 2 becomes,

\frac{(1+cos\ \theta)(1+sin\ \theta)}{1-cos^2\ \theta} ------- eqn 3

By algebraic identity,

a^2 - b^2 = (a+b)(a-b)

Therefore,

1-cos^2\theta = (1+cos\ \theta)(1-cos\ \theta)

Thus eqn 3 becomes,

\frac{(1+cos\ \theta)(1+sin\ \theta)}{(1+cos\ \theta)(1-cos\ \theta)}\\\\\frac{1+sin\ \theta}{1-cos\ \theta}

Therefore,

cosec^2\ \theta(1+cos\ \theta)(1+sin\ \theta) = \frac{1+sin\ \theta}{1-cos\ \theta}

Thus the value is found

Learn more about this topic

Find the value of cosec 2x​

https://brainly.in/question/9758013

If cot theta =4/3 then find the value of cosec ^2 theta + 1

https://brainly.in/question/14324505

Similar questions