Math, asked by umairhusaini1061, 1 year ago

Find the value of cot (-3155°)

Answers

Answered by MaheswariS
0

Answer:

\bf\:cot(-3155^{\circ})=tan5^{\circ}

Step-by-step explanation:

Find the value of cot (-3155°)

cot(-3155^{\circ})

Using

\boxed{cot(-\theta)=-cot\theta}

=-cot(3155^{\circ})

=-cot(8\times\:360^{\circ}+275^{\circ})

=-cot(270^{\circ}+5^{\circ})

Using,

\boxed{cot(270^{\circ}+\theta)=-tan\theta}

=-(-tan5^{\circ})

=tan5^{\circ}

\implies\:\bf\:cot(-3155^{\circ})=tan5^{\circ}

Answered by pulakmath007
6

\displaystyle\huge\red{\underline{\underline{Solution}}}

TO DETERMINE

cot (-3155°)

CALCULATION

STEP : 1

 \sf{Cot \theta \:  \:  is \:  an  \: odd \:  function \: }

 \sf{Cot ( -  {3155}^{ \circ} }) =  - \:  Cot  \:   {3155}^{ \circ}

STEP : 2

 \sf{  {3155}^{ \circ} } = 35 \times  {90}^{ \circ} +  {5}^{ \circ}

So

 \sf{Cot ( -  {3155}^{ \circ} })

 \sf{=  - \:  Cot  \:   {3155}^{ \circ} }

 \sf{=  - \:  Cot  (\:35 \times  {90}^{ \circ} +  {5}^{ \circ}})

STEP : 3

\sf{ \:The \:  angle \:   {3155}^{ \circ}  \: is  \: in \:  Fourth \:  Quadrant   \: }

STEP : 4

35 is an odd natural number

RESULT

 \sf{Cot ( -  {3155}^{ \circ} })

 \sf{=  - \:  Cot  (\:35 \times  {90}^{ \circ} +  {5}^{ \circ}})

 \sf{=   \:  tan \: {5}^{ \circ}}

━━━━━━━━━━━━━━━

LEARN MORE FROM BRAINLY

Find value of (1+tan13)(1+tan32)+(1+tan12)(1+tan33)

https://brainly.in/question/23306292

Similar questions