Math, asked by tanejasmarpit2003, 1 year ago

Find the value of cot(90-theta)tan theta-cosec(90-theta)sec theta/sin12cos15sec78cosec75 +cos^2(50+theta)tan^2(40-theta)/tan15tan37tan53tan75


Anonymous: Repost it

Answers

Answered by mysticd
40

Answer:

 Value \: of \: \\\frac{[cot(90-\theta)tan\theta-cosec(90-\theta)sec\theta]}{sin12 cos15 sec78 cosec75)}+\frac{cos^{2}(50+\theta)tan^{2}(40-\theta)}{tan15 tan37 tan53 tan75} \\\\=-1+sin^2(40-\theta)tan^{2}(40-\theta)

Step-by-step explanation:

 Value \: of \: \\\frac{[cot(90-\theta)tan\theta-cosec(90-\theta)sec\theta]}{sin12 cos15 sec78 cosec75)}+\frac{cos^{2}(50+\theta)tan^{2}(40-\theta)}{tan15 tan37 tan53 tan75}

 =\frac{tan\theta tan\theta-sec\theta sec\theta}{sin12sec(90-12)cos15cosec(90-15)}+\frac{cos^2[90-(40-\theta)]tan^{2}(40-\theta)}{tan15tan(90-15)tan37tan(90-37)}

=\frac{(tan^{2}\theta -sec^{2}\theta)}{(sin12cosec12)(cos15sec15)}+\frac{sin^2(40-\theta)tan^{2}(40-\theta)}{(tan15cot15)(tan37cot37)}

=\frac{-1}{1 \times 1}+\frac{sin^2(40-\theta)tan^{2}(40-\theta)}{1 \times 1}

=-1+sin^2(40-\theta)tan^{2}(40-\theta)

Therefore,

 Value \: of \: \\\frac{[cot(90-\theta)tan\theta-cosec(90-\theta)sec\theta]}{sin12 cos15 sec78 cosec75)}+\frac{cos^{2}(50+\theta)tan^{2}(40-\theta)}{tan15 tan37 tan53 tan75} \\\\=-1+sin^2(40-\theta)tan^{2}(40-\theta)

•••♪

Answered by Anonymous
23

\huge{\underline{\underline{\red{\mathfrak{AnSwEr :}}}}}

\small{\underline{\blue{\sf{To \: Prove :}}}}

\sf{\dfrac{cot(90- \theta)tan \theta-cosec(90- \theta)sec \theta}{(sin12 \times cos15 \times sec78 \times cosec75)}+\dfrac{cos^{2}(50+ \theta)tan^{2}(40- \theta)}{tan15 \times tan37 \times \times tan53 \times tan75}}

\rule{200}{1}

\small{\underline{\green{\sf{Solution :}}}}

\sf{\dfrac{cot(90-\theta)tan\theta-cosec(90-\theta)sec\theta}{(sin12 \times cos15 \times  sec78 \times cosec75)}+\dfrac{cos^{2}(50+\theta)tan^{2}(40-\theta)}{tan15 \times tan37 \times tan53 \times tan75} } \\ \\ \\ \sf : \implies {\dfrac{Cot(90 - \theta) tan \theta - Cosec(90 - \theta)  sec \theta}{sin12 \times cos 15 \times cos 12 \times sec 15} + \dfrac{cos(100 + 2 \theta)+ cos( 80 - 2 \theta)}{tan 15 \times tan 37 \times Cot 37 \times Cot 75}} \\ \\ \\ \sf {: \implies \dfrac{1 - 1}{sin12 \times cos 15 \times cos 12 \times sec 15} + \dfrac{2cos\frac{(100 + 2 \theta + 80 - 2 \theta)}{2} cos\dfrac{100 + 2 \theta - 80 + 2 \theta}{2}}{tan 15 \times tan 37 \times Cot 37 \times Cot 75}} \\ \\ \\ \sf{: \implies 0 + \dfrac{2cos90 \times cos \dfrac{100 + 2 \theta - 80 + 2 \theta}{2}}{1}}

\large{\boxed{\sf{As \: Cos \: 90^{\circ} = 0}}}

 : \implies {\sf{0 + \dfrac{0 \times cos \dfrac{100 + 2 \theta - 80 + 2 \theta}{2}}{1}}} \\ \\ \\ \sf{ : \implies 0 + 0} \\ \\ \sf{: \implies 0}

 \therefore Value is 0

Similar questions