Math, asked by dileepkumar6300, 7 months ago

find the value of (cot inverse 1/2) + (cot inverse 1/3)​

Answers

Answered by BrainlyPopularman
11

TO FIND :

• Value of   \bf  \:  \:  \cot ^{ - 1}  \left( \dfrac{1}{2}  \right)  + \cot ^{ - 1}  \left( \dfrac{1}{3}  \right)  = ? \\

SOLUTION :

• Let the function –

  \\ \bf  \implies y =  \cot ^{ - 1}  \left( \dfrac{1}{2}  \right)  + \cot ^{ - 1}  \left( \dfrac{1}{3}  \right)  \\

• Using identity –

  \\ \bf  \implies  \cot^{ - 1}  \left( \dfrac{1}{x}  \right) =  \tan^{ - 1} (x) \\

• So that –

  \\ \bf  \implies y =  \tan^{ - 1}  \left(2\right)  + \tan^{ - 1}  \left(3\right)  \\

• Using identity –

  \\ \bf  \implies  \tan^{ - 1}  \left(x\right)  + \tan^{ - 1}  \left(y\right) =  \tan^{ - 1} \left( \dfrac{x + y}{1 - xy}  \right)   \\

• So that –

  \\ \bf  \implies y =  \tan^{ - 1} \left( \dfrac{2+3}{1 - (2)(3)}  \right)   \\

  \\ \bf  \implies y =  \tan^{ - 1} \left( \dfrac{2+3}{1 -6}  \right)   \\

  \\ \bf  \implies y =  \tan^{ - 1} \left( \dfrac{5}{ - 5}  \right)   \\

  \\ \bf  \implies y =  \tan^{ - 1} \left( -  \cancel \dfrac{5}{5}  \right)   \\

  \\ \bf  \implies y =  \tan^{ - 1} \left( -1 \right)   \\

  \\ \bf  \implies y =  \tan^{ - 1} \left \{\tan \left( \dfrac{3\pi}{4} \right) \right \} \\

  \\ \bf  \implies \large{ \boxed{ \bf y = \dfrac{3\pi}{4}}} \\

Answered by sanchitachauhan241
7

{\sf{\underline{\underline{\pink{TO \ FIND :–}}}}}

Value of \begin{gathered}\bf \: \: \cot ^{ - 1} \left( \dfrac{1}{2} \right) + \cot ^{ - 1} \left( \dfrac{1}{3} \right) = ? \\\end{gathered}

{\sf{\underline{\underline{\red{SOLUTION :–}}}}}

{\sf{\underline{\underline{\pink{ Let \ the \  function –}}}}}

\begin{gathered}\\ \bf \implies y = \cot ^{ - 1} \left( \dfrac{1}{2} \right) + \cot ^{ - 1} \left( \dfrac{1}{3} \right) \\\end{gathered}

{\sf{\underline{\underline{\pink{Using \  identity –}}}}}

\begin{gathered}\\ \bf \implies \cot^{ - 1} \left( \dfrac{1}{x} \right) = \tan^{ - 1} (x) \\\end{gathered}

{\sf{\underline{\underline{\pink{ So \  that –}}}}}

\begin{gathered}\\ \bf \implies y = \tan^{ - 1} \left(2\right) + \tan^{ - 1} \left(3\right) \\\end{gathered}

{\sf{\underline{\underline{\pink{ Using \  identity –}}}}}

\begin{gathered}\\ \bf \implies \tan^{ - 1} \left(x\right) + \tan^{ - 1} \left(y\right) = \tan^{ - 1} \left( \dfrac{x + y}{1 - xy} \right) \\\end{gathered}

{\sf{\underline{\underline{\pink{ So \ that –}}}}}

\begin{gathered}\\ \bf \implies y = \tan^{ - 1} \left( \dfrac{2+3}{1 - (2)(3)} \right) \\\end{gathered}

\begin{gathered}\\ \bf \implies y = \tan^{ - 1} \left( \dfrac{2+3}{1 -6} \right) \\\end{gathered}

\begin{gathered}\\ \bf \implies y = \tan^{ - 1} \left( \dfrac{5}{ - 5} \right) \\\end{gathered}

\begin{gathered}\\ \bf \implies y = \tan^{ - 1} \left( - \cancel \dfrac{5}{5} \right) \\\end{gathered}

\begin{gathered}\\ \bf \implies y = \tan^{ - 1} \left( -1 \right) \\\end{gathered}

\begin{gathered}\\ \bf \implies y = \tan^{ - 1} \left \{\tan \left( \dfrac{3\pi}{4} \right) \right \} \\\end{gathered}

\begin{gathered}\\ \bf \implies \large{ \boxed{ \bf y = \dfrac{3\pi}{4}}} \\\end{gathered}

Similar questions