Find
the
value of
cot pi/8
Answers
Answered by
10
Answer:
Step-by-step explanation:
ot(π/8)=1/tan(π/8)
=1/6.8539x10-3
=145.9002198
Method 2: Using the half angle formula.
Cot( x/2) =cos(x/2) / sin(x/2)
= sqr(1+cosx)/sqr(1-cosx)
=sinx/(1-cosx)
So, cot (pi/8)= sin (pi/4) / [1-cos(pi/4)]
=(sqr2)/2 / [1-(sqr2)/2]
=Sqr2(2+sqr2)/2
= (2sqr2+2)/2
= sqr2+1
Answered by
4
Method 1:
cot(π/8)=1/tan(π/8)
=1/6.8539x10-3
=145.9002198
Method 2: Using the half angle formula.
Cot( x/2) =cos(x/2) / sin(x/2)
= sqr(1+cosx)/sqr(1-cosx)
=sinx/(1-cosx)
So, cot (pi/8)= sin (pi/4) / [1-cos(pi/4)]
=(sqr2)/2 / [1-(sqr2)/2]
=Sqr2(2+sqr2)/2
= (2sqr2+2)/2
= sqr2+1
Similar questions