Math, asked by sy3557741, 10 months ago

Find
the
value of
cot pi/8

Answers

Answered by sonabrainly
10

Answer:

Step-by-step explanation:

ot(π/8)=1/tan(π/8)

=1/6.8539x10-3

=145.9002198

Method 2: Using the half angle formula.

Cot( x/2) =cos(x/2) / sin(x/2)

 = sqr(1+cosx)/sqr(1-cosx)

 =sinx/(1-cosx)

So, cot (pi/8)= sin (pi/4) / [1-cos(pi/4)]

 =(sqr2)/2 / [1-(sqr2)/2]

 =Sqr2(2+sqr2)/2

 = (2sqr2+2)/2

 = sqr2+1

Answered by balurocks70
4

Method 1:

cot(π/8)=1/tan(π/8)

=1/6.8539x10-3

=145.9002198

Method 2: Using the half angle formula.

Cot( x/2) =cos(x/2) / sin(x/2)

= sqr(1+cosx)/sqr(1-cosx)

=sinx/(1-cosx)

So, cot (pi/8)= sin (pi/4) / [1-cos(pi/4)]

=(sqr2)/2 / [1-(sqr2)/2]

=Sqr2(2+sqr2)/2

= (2sqr2+2)/2

= sqr2+1

Similar questions