Find the value of cot²30°-cosec²45°-sin²90°+2cot²45°\tan²60°-2cos 0°+sec²60°-cos²45°
Answers
Answered by
0
Answer:
Step-by-step explanation:
We have to find the value of cot^2(30°)-cosec^2(45°)-sin^2(90°)+2cot^2(45°)/tan^2(60°)-2cos(0°)+sec^2(60°)-cos^2(45°)
Now cot(30°)=√3,cosec(45°)=√2,sin(90°)=1,cot(45°)=1,tan(60°)=√3,cos(0°)=1,sec(60°)=2,cos(45°)=1/√2
Now putting these value in the given expression we get,
(√3)^2-(√2) ^2-(1) ^2+2(1) ^2/(√3) ^2-2(1) +(2) ^2-(1/√2) ^2
=3-2-1+2/3-2+4-(1/2)
=2/5-(1/2)
=2/(10-1)/2=2/(9/2)
=4/9
Similar questions