find the value of(cot4theta -cosec4theta+cot2theta+cosec2theta )
Answers
Answered by
0
Cot4θ - Cosec4θ + Cot2θ + Cosec2θ = 2Cosec2θ
Step-by-step explanation:
Cot4θ - Cosec4θ + Cot2θ + Cosec2θ
= Cos4θ/Sin4θ - 1/Sin4θ + Cos2θ/Sin2θ + 1/Sin2θ
= (Cos4θ - 1)/Sin4θ + (Cos2θ + 1)/Sin2θ
= (Cos4θ - 1)/2Sin2θCos2θ + (Cos2θ + 1)/Sin2θ
= (-2Sin²2θ)/2Sin2θCos2θ + (Cos2θ + 1)/Sin2θ
= -Sin2θ/Cos2θ + (Cos2θ + 1)/Sin2θ
= (-Sin²2θ + Cos²2θ + Cos2θ)/Cos2θSin2θ
= 2 Cos2θ/Cos2θSin2θ
= 2/Sin2θ
= 2Cosec2θ
Cot4θ - Cosec4θ + Cot2θ + Cosec2θ = 2Cosec2θ
Learn more:
1/secx-tanx -1/cos = 1/cosx - 1/secx+tanx
https://brainly.in/question/8160834
If 2 sin x = sin y and 2 cos x = 3 cos y then find the value of tan (x + y)
https://brainly.in/question/10685245
Similar questions