Math, asked by sanyamshruti, 11 months ago

find the value of(cot4theta -cosec4theta+cot2theta+cosec2theta )

Answers

Answered by amitnrw
0

Cot4θ  - Cosec4θ  + Cot2θ  + Cosec2θ =  2Cosec2θ

Step-by-step explanation:

Cot4θ  - Cosec4θ  + Cot2θ  + Cosec2θ

= Cos4θ/Sin4θ  - 1/Sin4θ   + Cos2θ/Sin2θ  + 1/Sin2θ

= (Cos4θ - 1)/Sin4θ  + (Cos2θ + 1)/Sin2θ

= (Cos4θ - 1)/2Sin2θCos2θ  + (Cos2θ + 1)/Sin2θ

= (-2Sin²2θ)/2Sin2θCos2θ  + (Cos2θ + 1)/Sin2θ

= -Sin2θ/Cos2θ  + (Cos2θ + 1)/Sin2θ

= (-Sin²2θ  + Cos²2θ + Cos2θ)/Cos2θSin2θ

= 2 Cos2θ/Cos2θSin2θ

= 2/Sin2θ

= 2Cosec2θ

Cot4θ  - Cosec4θ  + Cot2θ  + Cosec2θ =  2Cosec2θ

Learn more:

1/secx-tanx -1/cos = 1/cosx - 1/secx+tanx

https://brainly.in/question/8160834

If 2 sin x = sin y and 2 cos x = 3 cos y then find the value of tan (x + y)

https://brainly.in/question/10685245

Similar questions