Physics, asked by ksrigirirao1970, 9 months ago

find the value of d by dx (2x square) ​

Answers

Answered by Anonymous
2

<div style="color: #FFFFFF; font: normal 18px arial, sans-serif; background-color: #347c17; border: #ff0000 4px solid; width: 70%; margin: 0 auto; padding: 4px 5px 3px 5px; -moz-border-radius: 17px; -webkit-border-radius: 17px; border-radius: 17px; -moz-box-shadow: 5px 5px 5px rgba(0, 0, 0, 0.20); -webkit-box-shadow: 5px 5px 5px rgba(0, 0, 0, 0.20); box-shadow: 5px 5px 5px rgba(0, 0, 0, 0.20);"><marquee scrolldelay="250"><b><u>☺️Hi Buddy☺️</u> </b></marquee>

\huge\underline\mathfrak\pink{ Hello~Mate    }

<font color="blue">

=dy/dx(2x²)

=2X2x

=4x

&lt;body bgcolor="black"&gt;&lt;font color="yellow"&gt;</p><p>&lt;marquee  scrollamount =1300 /&gt;

☢️Loknath☢️ ☢️Loknath☢️

Answered by Asterinn
4

 \implies \:  \dfrac{d(2 {x}^{2} )}{dx}

\implies \: 2 \times  \dfrac{d( {x}^{2} )}{dx}

We know that :-

d(x^n)/dx = n x^(n-1)

Now using Chain rule :-

\implies \: 2 \times  2x  \times\dfrac{d( x )}{dx}

\implies \: 2 \times  2x  \times1

\implies \: 4x

Answer :

\implies \:  \dfrac{d(2 {x}^{2} )}{dx}  = 4x

________________________

Learn more :-

d(x^n)/dx = n x^(n-1)

d(log x)/dx = 1/x

d(e^x)/dx = e^x

d(sinx)/dx = cosx

d(cos x)/dx = -sin x

d(cosec x)/dx = -cot x cosec x

d(tan x)/dx = sec²x

d(sec x)/dx = secx tanx

d(cot x)/dx = - cosec² x

_____________________

Similar questions